Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disorder which features progressive muscle wasting and weakness. Despite advances in treatment, the weakness of DMD will eventually necessitate a wheelchair for almost all children. The goal of wheelchair use is to maximize function and mobility while minimizing discomfort and postural abnormalities. Because of the large variation of patient symptoms and functional deficits, no single wheelchair would adequately serve the needs of all children with DMD. Unfortunately, little information to guide selection of equipment for children with DMD is available. This article discusses the decision-making processes regarding appropriate time to provide equipment, the evaluation of DMD clients, and reviews the numerous options in order to help prescribers, caregivers and clients design an appropriate wheelchair system.
Download full-text PDF |
Source |
---|
Muscle Nerve
January 2025
Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Introduction/aims: Prophylactic treatment of left ventricular dysfunction (LVD) in Duchenne muscular dystrophy (DMD) delays onset of LVD, but there is limited data showing impact on survival. Our aim was to describe survival among treated and untreated individuals with DMD.
Methods: Retrospective, population-based surveillance data from the Muscular Dystrophy Surveillance, Tracking and Research Network (MD STARnet) were used.
Cells
January 2025
Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland.
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD).
View Article and Find Full Text PDFCells
January 2025
Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.
Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.
View Article and Find Full Text PDFJ Stem Cells Regen Med
December 2024
Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Naples (IT).
Pathophysiology
January 2025
Postgraduate Program in Health Sciences, Faculty of Medicine of Jundiaí (FMJ), Jundiaí 13202-550, Brazil.
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!