The polyamines are ubiquitous polycationic compounds. Over the past 40 yr, investigation has shown that some of these, namely spermine, spermidine, and putrescine, are essential to male and female reproductive processes and to embryo/fetal development. Indeed, their absence is characterized by infertility and arrest in embryogenesis. Mammals synthesize polyamines de novo from amino acids or import these compounds from the diet. Information collected recently has shown that polyamines are essential regulators of cell growth and gene expression, and they have been implicated in both mitosis and meiosis. In male reproduction, polyamine expression correlates with stages of spermatogenesis, and polyamines appear to function in promoting sperm motility. There is evidence for polyamine involvement in ovarian follicle development and ovulation in female mammals, and polyamine synthesis is required for steroidogenesis in the ovary. Studies of the embryo indicate a polyamine requirement that can be met from maternal sources before implantation, whereas elimination of polyamine synthesis abrogates embryo development at gastrulation. Polyamines play roles in embryo implantation, in decidualization, and in placental formation and function, and polyamine privation during gestation results in intrauterine growth retardation. Emerging information implicates dietary arginine and dietary polyamines as nutritional regulators of fertility. The mechanisms by which polyamines regulate these multiple and diverse processes are not yet well explored; thus, there is fertile ground for further productive investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/er.2011-0012 | DOI Listing |
Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and its development typically involves complex metabolic reprogramming. By mapping the spatial distributions of metabolites and -glycans in heterogeneous colorectal cancer tissues, we can elucidate cancer-associated metabolic and -glycan changes. Herein, we combine mass spectrometry imaging-based metabolomics and -glycomics to characterize the spatially resolved reprogramming of metabolites and -glycans in colorectal cancer tissues.
View Article and Find Full Text PDFFront Microbiol
January 2025
Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Department of Neurology and MetabERN; Esplugues de Llobregat, Barcelona, Spain.
Cell trafficking alterations are a growing group of disorders and one of the largest categories of Inherited Metabolic Diseases. They have complex and variable clinical presentation. Regarding neurological manifestations they can present a wide repertoire of symptoms ranging from neurodevelopmental to neurodegnerative disorders.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Internal Medicine IV, Department of Gastroenterology, University Hospital Heidelberg, INF 410, Heidelberg, 69120, Germany.
Background & Aim: Twenty-four-hour urinary copper excretion (24 h-UCE) is the standard diagnostic tool for dose adjustments in maintenance therapy in Wilson disease (WD) patients. Guidelines lack data if both variants of 24 h-UCE measurement (with or without 48 h of treatment interruption) are equally interpretable.
Methods: Eighty-four patients with a confirmed diagnosis of WD treated with chelators (50% of patients with D-Penicillamine and 50% with trientine) and with pairwise 24-h-UCE values on-therapy and off-therapy were included in the analysis.
Nat Commun
January 2025
The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
Metabolic syndrome (MetS) is a difficult-to-manage disease that poses a significant risk to human health. Here, we show that the supplementation of Lactobacillus reuteri ZJ617 ameliorates symptoms of MetS in mice induced by the high-fat diet. L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!