Differential effects of growth hormone versus insulin-like growth factor-I on the mouse plasma proteome.

Endocrinology

Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA.

Published: October 2011

The GH/IGF-I axis has both pre- and postpubertal metabolic effects. However, the differential effects of GH and/or IGF-I on animal physiology or the plasma proteome are still being unraveled. In this report, we analyzed several physiological effects along with the plasma proteome after treatment of mice with recombinant bovine GH or recombinant human IGF-I. GH and IGF-I showed similar effects in increasing body length, body weight, lean and fluid masses, and organ weights including muscle, kidney, and spleen. However, GH significantly increased serum total cholesterol, whereas IGF-I had no effect on it. Both acute and longer-term effects on the plasma proteome were determined. Proteins found to be significantly changed by recombinant bovine GH and/or recombinant human IGF-I injections were identified by mass spectrometry (MS) and MS/MS. The identities of these proteins were further confirmed by Western blotting analysis. Isoforms of apolipoprotein A4, apolipoprotein E, serum amyloid protein A-1, clusterin, transthyretin, and several albumin fragments were found to be differentially regulated by GH vs. IGF-I in mouse plasma. Thus, we have identified several plasma protein biomarkers that respond specifically and differentially to GH or IGF-I and may represent new physiological targets of these hormones. These findings may lead to better understanding of the independent biological effects of GH vs. IGF-I. In addition, these novel biomarkers may be useful for the development of tests to detect illicit use of GH or IGF-I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3176651PMC
http://dx.doi.org/10.1210/en.2011-1217DOI Listing

Publication Analysis

Top Keywords

plasma proteome
16
igf-i
9
differential effects
8
mouse plasma
8
effects plasma
8
recombinant bovine
8
recombinant human
8
human igf-i
8
plasma
6
effects
6

Similar Publications

Ligand guided in vivo crosslinking and affinity purification mass spectrometry for identifying membrane receptors of Tau.

Talanta

January 2025

State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Misfolded neurotoxic proteins, such as Tau protein, spread within the brain in many neurodegenerative diseases. Receptors play an important role in the recognition of spreading proteins for endocytosis. Blocking the receptors is essential to inhibit neurotoxic proteins spreading in the brain.

View Article and Find Full Text PDF

Background: Although Amyloid-beta and Tau are the hallmarks of Alzheimer's Disease (AD), other protein pathways such as endothelial dysfunction may be involved and may precede cognitive symptoms. Our objective was to characterize the cerebrospinal fluid (CSF) proteomic profiles focusing on cardiometabolic-related protein pathways in individuals on the AD spectrum.

Methods: We performed CSF and plasma-targeted proteomics (276 proteins) from 354 participants of the Brain Stress Hypertension and Aging Program (BSHARP), of which 8% had preclinical AD, and 24% had MCI due to AD.

View Article and Find Full Text PDF

Biological age can be quantified by composite proteomic scores, called aging clocks. We investigated whether biological age acceleration (a discrepancy between chronological and biological age) in midlife and late-life is associated with cognitive function and risk of dementia. We used two population-based cohort studies: Atherosclerosis Risk in Communities (ARIC) Study and Multi-Ethnic Study of Atherosclerosis (MESA).

View Article and Find Full Text PDF

Increasing evidence suggests that individuals infected with Coronavirus disease 2019 (COVID-19) are at a higher risk of developing type 2 diabetes (T2D) compared to those who are not infected. However, the mechanisms underlying this relationship remain poorly understood. In this study, we aimed to systematically evaluate the mediating roles of 3,283 plasma proteins in the link between COVID-19 susceptibility and T2D by conducting proteome-wide Mendelian randomization (MR) analyses.

View Article and Find Full Text PDF

This study aimed to elucidate the complexity of the humoral immune response in COVID-19 patients with varying disease trajectories using a SARS-CoV-2 whole proteome peptide microarray chip. The microarray, containing 5347 peptides spanning the entire SARS-CoV-2 proteome and key variants of concern, was used to analyze IgG responses in 10 severe-to-recovered, 9 nonsevere-to-severe cases, and 10 control case (5 pre-pandemic and 5 SARS-CoV-2-negative) plasma samples. We identified 1151 IgG-reactive peptides corresponding to 647 epitopes, with 207 peptides being cross-reactive across 124 epitopes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!