Charge injection and transport in bottom-contact regioregular-poly(3-hexylthiophene) (rr-P3HT) based field-effect transistors (FETs), wherein the Au source and drain contacts are modified by self-assembled monolayers (SAMs), is reported at different channel length scales. Ultraviolet photoelectron spectroscopy is used to measure the change in metal work function upon treatment with four SAMs consisting of thiol-adsorbates of different chemical composition. Treatment of FETs with electron-poor (electron-rich) SAMs resulted in an increase (decrease) in contact metal work function because of the electron-withdrawing (-donating) tendency of the polar molecules. The change in metal work function affects charge injection and is reflected in the form of the modulation of the contact resistance, R(C). For example, R(C) decreased to 0.18 MΩ in the case of the (electron-poor) 3,5-bis-trifluoromethylbenzenethiol treated contacts from the value of 0.61 MΩ measured in the case of clean Au-contacts, whereas it increased to 0.97 MΩ in the case of the (electron-rich) 3-thiomethylthiophene treated contacts. Field-effect mobility values are observed to be affected in short-channel devices (<20 μm) but not in long-channel devices. This channel-length-dependent behavior of mobility is attributed to grain-boundary limited charge transport at longer channel lengths in these devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am200449x | DOI Listing |
RSC Adv
January 2025
School of Electronic Engineering, Guangxi Key Laboratory of Multidimensional Information Fusion for Intelligent Vehicles, Guangxi University of Science and Technology Liuzhou 545000 China
This study presents a novel approach to enhance photoelectrochemical (PEC) water oxidation by integrating cobalt phthalocyanine (CoPc) with bismuth vanadate (BVO) a direct solvothermal method. The as-prepared BVO@CoPc photoanode demonstrated a photocurrent density of 4.0 mA cm at 1.
View Article and Find Full Text PDFInt J Pharm
January 2025
Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark. Electronic address:
Oligonucleotides represent a class of molecules that exhibit remarkable therapeutic potential due to their unparalleled target specificity, yet they suffer from limited cellular uptake and lack of tissue selectivity. Extensive research is conducted with cell-penetrating peptides (CPPs) as delivery excipients due to their ability to translocate across cellular membranes and deliver cargo into cells. This study aims to investigate an innovative approach to rapidly, and with small amounts of compound, analyze and compare complexation of CPPs to oligonucleotides.
View Article and Find Full Text PDFNano Lett
January 2025
School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China.
The high responsivity and broad spectral sensitivity of organic photodetectors (OPDs) present a bright future of commercialization. However, the relatively high dark current density still limits its development. Herein, two novel nonpolar p-type conjugated small molecules, NSN and NSSN, are synthesized as interface layers to enhance the performance of the OPDs, which not only can tune energy alignments and increase the reverse charge injection barrier but also can reduce the interfacial trap density.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) is commonly used for identification of compounds in complex samples due to the high chromatographic and mass spectral resolution provided. In subsequent data processing workflows, it is imperative to preserve this resolution to fully exploit the data. "Region of interest" (ROI) algorithms were introduced as a better alternative to equidistant binning for compressing HRMS data because they better preserve the mass spectral resolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
The development of quantum dot light-emitting diodes (QLEDs) represents a promising advancement in next-generation display technology. However, there are challenges, especially in achieving efficient hole injection, maintaining charge balance, and replacing low-stability organic materials such as PEDOT:PSS. To address these issues, in this study, self-assembled monolayers (SAMs) were employed to modify the surface properties of NiO, a hole injection material, within the structure of ITO/HIL/TFB/QDs/ZnMgO/Al QLEDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!