Introduction: The effects of three different decontaminating solutions in clinical use for peri-implantitis therapy on the chemical structure and surface roughness of commercially pure (CP) Ti were investigated. A further aim was to survey the response of the biological environment to these changes, by examining the attachment and proliferation of human epithelial cells after treatment of the Ti surfaces with these solutions.

Materials And Methods: CP (grade 4) machined titanium discs (CAMLOG Biotechnologies AG, Switzerland) were treated with 3% H2O2 (5 min), saturated citric acid (pH = 1; 1 min) or chlorhexidine gel (CHX, 5 min). The surface properties were followed through the use of X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The epithelial cell attachment and proliferation was examined by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bicinchoninic acid (BCA) protein-content assays.

Results: XPS showed an intact TiO2 layer on each sample and CHX was adsorbed by the surface, as C-O and/or C=O bond formation was revealed. AFM results gave no significant changes in the roughness after treating the surfaces with the cleaning solutions. While MTT and BCA assays did not show significant differences in epithelial cell attachments, the cell proliferation was significantly increased after H2O2 treatment as compared to CHX (not shown by BCA assays).

Conclusions: The applied decontaminating agents do not damage the Ti surface. H2O2 can be used effectively in decontaminating the implants affected by peri-implantitis, as the human epithelial cell growth was improved, in contrast with CHX.

Download full-text PDF

Source

Publication Analysis

Top Keywords

epithelial cell
16
human epithelial
12
decontaminating solutions
8
attachment proliferation
8
surface
5
epithelial
5
cell
5
[effect decontaminating
4
solutions titanium
4
titanium surface
4

Similar Publications

A 47-year-old woman with a 12-year history of anemia and high C-reactive protein (CRP) levels was admitted to our hospital with worsening fatigue and night sweats. She had high levels of immunoglobulin G (IgG; 4182 mg/dL), IgA (630.6 mg/dL), and CRP (7.

View Article and Find Full Text PDF

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Background: Chronic graft-versus-host disease (cGVHD) manifests with characteristics of autoimmune disease with organs attacked by pathogenic helper T cells. Recent studies have highlighted the role of T cells in cGVHD pathogenesis. Due to limited understanding of underlying mechanisms, preventing cGVHD after allogenic hematopoietic cell transplantation (HCT) has become a major challenge.

View Article and Find Full Text PDF

Prevention of radiotherapy-induced pro-tumorigenic microenvironment by SFK inhibitors.

Theranostics

January 2025

College of Pharmacy, Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Radiotherapy is a widely employed technique for eradication of tumor using high-energy beams, and has been applied to approximately 50% of all solid tumor patients. However, its non-specific, cell-killing property leads to inevitable damage to surrounding normal tissues. Recent findings suggest that radiotherapy-induced tissue damage contributes to the formation of a pro-tumorigenic microenvironment.

View Article and Find Full Text PDF

Leaky gut syndrome (LGS) is caused by intestinal epithelial injury and increased intestinal permeability due to a variety of factors, including chronic stress, inflammatory bowel disease, diabetes, surgery, and chemotherapy, resulting in an increased influx of matter from the intestinal lumen causing constipation and bacteremia. To our knowledge, this is the first known case of LGS along with () bacteremia in a neurodegenerative disease patient. The patient was an 81-year-old male with a history of Alzheimer's disease, cerebral infarction, and diverticulitis in a psychiatric hospital, fed via a nasogastric tube.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!