The ciprofloxacin-iron interaction, resulting in a lower bioavailability, is well documented in vivo; however, a mechanistic explanation supported by experimental data of this interaction is missing. In the present study, ciprofloxacin hydrochloride (HCl) and ferrous sulfate interaction was simulated in vitro by performing solubility and dissolution studies in the reactive media containing ferrous sulfate. Characterization of the precipitate formed indicated its probable chemical structure as Fe(SO(4) (2-) )(2) (Cl(-) )(2) (ciprofloxacin)(2) × (H(2) O)(n) , where n is up to 12 molecules of water. The solubility of this complex in water was estimated to be approximately 2  mg/mL, being about 20-fold lower than the solubility of ciprofloxacin HCl. The solubility of the complex was used as input parameter for an in silico modeling by GastroPlus™ and the resulting predicted plasma time curves were in good agreement with the in vivo data. These results strongly indicate that ciprofloxacin-iron interaction in vivo is caused by the formation of a low soluble complex. This interaction was also simulated by in vitro dissolution, in which a mini scale apparatus provided more biorelevant results than the standard dissolution apparatus, probably because the drug concentrations in the mini apparatus were higher and, thus, closer to the conditions encountered in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.22707DOI Listing

Publication Analysis

Top Keywords

sulfate interaction
8
ciprofloxacin-iron interaction
8
ferrous sulfate
8
interaction simulated
8
simulated vitro
8
solubility complex
8
interaction
6
biopharmaceutical characterization
4
characterization ciprofloxacin
4
ciprofloxacin hcl-ferrous
4

Similar Publications

This study explores the development and characterization of lyophilized chondroitin sulfate (CHON)-loaded solid lipid nanoparticles (SLN) as an innovative platform for advanced drug delivery. Solid lipid nanoparticles are increasingly recognized for their biocompatibility, their ability to encapsulate diverse compounds, their capacity to enhance drug stability, their bioavailability, and their therapeutic efficacy. CHON, a naturally occurring glycosaminoglycan with anti-inflammatory and regenerative properties, was integrated into SLN formulations using the hot microemulsion technique.

View Article and Find Full Text PDF

Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose-Anionic Surfactant Complexes on Negatively Charged Substrates.

Polymers (Basel)

January 2025

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.

This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.

View Article and Find Full Text PDF

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

Glycosylation Pathways Targeted by Deregulated miRNAs in Autism Spectrum Disorder.

Int J Mol Sci

January 2025

Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy.

Autism Spectrum Disorder (ASD) is a complex condition with a multifactorial aetiology including both genetic and epigenetic factors. MicroRNAs (miRNAs) play a role in ASD and may influence metabolic pathways. Glycosylation (the glycoconjugate synthesis pathway) is a necessary process for the optimal development of the central nervous system (CNS).

View Article and Find Full Text PDF

Chromatographic retention assisted in-silico prediction of anticancer potential of glucocorticoids on cancer cell lines.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.

Glucocorticoids (GCs) are hallmarks of anti-inflammatory activity. They are used as adjuvant therapy in oncology medications to alleviate some of the associated side effects. Although recent research has indicated that GCs have favorable anticancer potential, some scientific evidence suggests a pro-proliferation impact of GCs on cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!