There is concern that bladder augmentation with bowel segments predisposes toward the development of carcinoma. Additionally, patients with neurogenic bladder and bladder cancer often present with advanced stage and have poor survival. Cellular hyperproliferation at the urointestinal junction (UIJ) has been implicated in this scenario. We aimed to develop a reproducible murine model of ileocystoplasty (ICP). We also performed preliminary analysis of any early histologic changes with focus on cellular proliferation at the UIJ. Fifteen 6- to 8-week-old female C57BL/6 mice underwent ICP, where a 1-cm ileal segment was used for bladder augmentation. Four sham mice underwent cystotomy and closure, and four mice did not undergo surgery. The mice were euthanized at 12 weeks postsurgery, and paraffin sections were stained for hematoxylin and eosin (H&E). Cellular proliferation was investigated using Ki-67. A novel model of ICP in mice was developed and demonstrated to be technically feasible in approximately 60 min under the operating microscope. Twelve-week postsurgical survival rates were 80% (12 of 15). The surviving mice had a similar weight gain as the sham mice. H&E sections showed thickened urothelium (six to 10 cell layers) at the UIJ, but sparse mitotic figures and no dysplastic changes. Ki-67 staining was rare in the urothelium, and showed no differences between the sham and ICP mice in the bladder or at the UIJ. We here demonstrate the first murine model of ICP. Preliminary studies did not show evidence of early hyperproliferation at the UIJ or in the bladder, but further long-term studies as well as studies with transgenic mice are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596530PMC
http://dx.doi.org/10.1100/tsw.2011.127DOI Listing

Publication Analysis

Top Keywords

murine model
12
mice
9
model ileocystoplasty
8
early histologic
8
histologic changes
8
bladder augmentation
8
cellular proliferation
8
mice underwent
8
sham mice
8
model icp
8

Similar Publications

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism.

Am J Physiol Endocrinol Metab

January 2025

Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.

View Article and Find Full Text PDF

Aging is a complex process characterized by biological decline and a wide range of molecular alterations to cells, including changes to DNA methylation. In this study, we used a male-specific epigenetic marker of aging to build an epigenetic predictor that measures long-term androgen exposure in sheep and mice (median absolute error of 4.3 and 1.

View Article and Find Full Text PDF

Brain metastasis (BM) is a poor prognostic factor in cancer patients. Despite showing efficacy in many extracranial tumors, immunotherapy with anti-PD-1 monoclonal antibody (mAb) or anti-CTLA-4 mAb appears to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti-PD-1 and anti-CTLA-4 mAbs has a potent antitumor effect on BM, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!