A photo-induced excited state structure of a hetero-bimetallic ionic pair complex, Nd(DMA)4(H2O)4Fe(CN)6·3H2O, analyzed by single crystal X-ray diffraction.

Chem Commun (Camb)

Centre for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, DK-8000 Aarhus C, Denmark.

Published: September 2011

The excited state crystal structure of the ionic complex (Nd(DMA)(4)(H(2)O)(4)-Fe(CN)(6)·3H(2)O (DMA = dimethylacetamide) has been determined at 15 K upon UV illumination by single crystal X-ray diffraction. Significant structural changes are observed around the Fe site in the excited state. These changes are similar to those observed for a related molecular compound exhibiting photomagnetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cc12626aDOI Listing

Publication Analysis

Top Keywords

excited state
12
single crystal
8
crystal x-ray
8
x-ray diffraction
8
changes observed
8
photo-induced excited
4
state structure
4
structure hetero-bimetallic
4
hetero-bimetallic ionic
4
ionic pair
4

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Extended ligand conjugation enhances luminescent thermometry in [Dy(diketone)(bipyrimidine)] SMMs, as substantiated by crystallographic, photoluminescence, and lifetime decay analyses. This conjugation facilitates rare direct energy transfer from the ligands' singlet state to the metal centers, as evidenced by the nanosecond excited-state lifetime of Dy(III).

View Article and Find Full Text PDF

Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!