Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets--adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described--all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137616PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022022PLOS

Publication Analysis

Top Keywords

trim genes
20
trim
11
trim proteins
8
b302 domain
8
positive selection
8
encoding rbcc-b302
8
rbcc-b302 proteins
8
proteins
7
domain
7
genes
6

Similar Publications

It is established that BCG vaccination results in the development of both a specific immune response to mycobacterial infections and a nonspecific (heterologous) immune response, designated as trained immunity (TRIM), to other pathogens. We hypothesized that local BCG immunization may induce an early immune response in bone marrow and spleen innate immunity cells. The early transcriptomic response of various populations of innate immune cells, including monocytes, neutrophils, and natural killer (NK) cells, to BCG vaccination was examined.

View Article and Find Full Text PDF

Mechanistic Role of TRIM26 in Viral Infection and Host Defense.

Genes (Basel)

November 2024

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China.

(TRIM26) is an E3 ubiquitin ligase and a member of the TRIM family. Similar to other TRIM proteins, TRIM26 consists of three domains, collectively termed RBCC: a Really Interesting New Gene (RING) domain, one B-Box domain, and a C terminal domain consisting of a PRY/SPRY domain. The PRY/SPRY domain exhibits relatively higher conservation compared with the RING and B-Box domains, suggesting potentially similar roles across TRIM26 proteins from various species.

View Article and Find Full Text PDF
Article Synopsis
  • - Wound infections complicate recovery by causing tissue damage and delays in healing; traditional microbiological diagnostics are not ideal for emergency settings due to equipment size and long turnaround times.
  • - This study developed a clinical metagenomics (CMg) workflow for analyzing wound swab samples, which was faster (about 4 hours) and provided extra info like fungal identification and antimicrobial resistance alongside standard testing.
  • - Results showed CMg achieved decent sensitivity (83.82%) and specificity (66.64%) compared to traditional methods, indicating its potential as a rapid diagnostic tool in challenging medical situations, with future improvements needed for automation and data interpretation.
View Article and Find Full Text PDF

TRIM65 regulates innate immune signaling by enhancing K6-linked ubiquitination of IRF3 and its chromatin recruitment.

Cell Rep

December 2024

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Viral infection triggers a rapid and effective cellular response primarily mediated by interferon β (IFNβ), which induces an antiviral state through complex signaling cascades. To maintain a robust antiviral response while preventing excessive activation, the induction of IFNβ and downstream signaling are tightly regulated. Members of the tripartite-motif (TRIM) family of E3 ubiquitin (Ub) ligases play crucial roles in modulating these processes.

View Article and Find Full Text PDF

In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!