Suppressor of cytokine signaling 1-deficient (SOCS1(-/-)) mice, which are lymphopenic, die <3 wk after birth of a T cell-mediated autoimmune inflammatory disease characterized by leukocyte infiltration and destruction of vital organs. Notably, Foxp3(+) regulatory T cells (Tregs) have been shown to be particularly potent in inhibiting inflammation-associated autoimmune diseases. We observed that SOCS1(-/-) mice were deficient in peripheral Tregs despite enhanced thymic development. The adoptive transfer of SOCS1-sufficient Tregs, CD4(+) T lymphocytes, or administration of SOCS1 kinase inhibitory region (KIR), a peptide that partially restores SOCS1 function, mediated a statistically significant but short-term survival of SOCS1(-/-) mice. However, the adoptive transfer of SOCS1-sufficient CD4(+) T lymphocytes, combined with the administration of SOCS1-KIR, resulted in a significant increase in the survival of SOCS1(-/-) mice both short and long term, where 100% death occurred by day 18 in the absence of treatment. Moreover, the CD4(+)/SOCS1-KIR combined therapy resulted in decreased leukocytic organ infiltration, reduction of serum IFN-γ, and enhanced peripheral accumulation of Foxp3(+) Tregs in treated mice. These data show that CD4(+)/SOCS1-KIR combined treatment can synergistically promote the long-term survival of perinatal lethal SOCS1(-/-) mice. In addition, these results strongly suggest that SOCS1 contributes to the stability of the Foxp3(+) Treg peripheral population under conditions of strong proinflammatory environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159835PMC
http://dx.doi.org/10.4049/jimmunol.1003819DOI Listing

Publication Analysis

Top Keywords

inhibition socs1-/-
4
socs1-/- lethal
4
lethal autoinflammatory
4
autoinflammatory disease
4
disease correlated
4
correlated enhanced
4
enhanced peripheral
4
peripheral foxp3+
4
foxp3+ regulatory
4
regulatory cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!