Reactivation of VX-inhibited AChE by novel oximes having two oxygen atoms in the linker.

Environ Toxicol Pharmacol

Center of Advanced Studies, Hradec Kralove, Czech Republic; Department of Toxicology, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic.

Published: July 2010

Two newly developed AChE reactivators possessing two oxime groups in 4-position of the pyridinium rings with linkers CH(2)O(CH(2))(2)OCH(2) and CH(2)O(CH(2))(4)OCH(2) were tested for their potency to reactivate VX-inhibited AChE. Their reactivation potency was compared with currently available oximes such as pralidoxime, obidoxime and HI-6. Appropriate constants (affinity towards the intact and inhibited enzyme, reactivation rate) characterizing the reactivation process were determined. According to the data obtained, a new oxime with CH(2)O(CH(2))(2)OCH(2) linker reached as high reactivation potency as HI-6. The percentage of reactivation of the oxime with CH(2)O(CH(2))(2)OCH(2) linker was comparable to that of obidoxime at a concentration 10(-3)M. Hence, these oximes may be worthy of future development for the treatment of nerve agent intoxications, especially, with lipophilic agents such as soman and cyclosarin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2010.03.011DOI Listing

Publication Analysis

Top Keywords

vx-inhibited ache
8
reactivation potency
8
oxime ch2och22och2
8
ch2och22och2 linker
8
reactivation
6
reactivation vx-inhibited
4
ache novel
4
novel oximes
4
oximes oxygen
4
oxygen atoms
4

Similar Publications

Halogenated monopyridinium oximes are less effective in reactivation of phosphylated cholinesterases than bisquaternary oximes.

Bioorg Chem

December 2024

University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic. Electronic address:

Mono-quaternary pyridinium oximes derived from K-oximes K027, K048 and K203 were designed, synthesized and evaluated for the reactivation of organophosphate-inhibited cholinesterases. The incorporation of the halogen atoms to the structure decreased the pK value of the oxime group resulting in an increased formation of oximate necessary for reactivation. The stability and pK values were found to be similar to analogous bis-quaternary compounds.

View Article and Find Full Text PDF

Government-sanctioned use of nerve agents (NA) has escalated dramatically in recent years. Oxime reactivators of organophosphate (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) serve as antidotes toward poisoning by OPNAs. The oximes used as therapeutics are quaternary compounds that cannot penetrate the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Organophosphate (OP) intoxications from nerve agent and OP pesticide exposures are managed with pyridinium aldoxime-based therapies whose success rates are currently limited. The pyridinium cation hampers uptake of OPs into the central nervous system (CNS). Furthermore, it frequently binds to aromatic residues of OP-inhibited acetylcholinesterase (AChE) in orientations that are nonproductive for AChE reactivation, and the structural diversity of OPs impedes efficient reactivation.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how deprotonated pralidoxime (2-PAM) can reactivate acetylcholinesterase (AChE) that has been inhibited by the nerve agent VX using quantum mechanical methods.
  • The process involves a series of addition-elimination reactions, beginning with a bimolecular substitution mechanism and the formation of a specific transition state.
  • The research builds on previous molecular mechanics findings and confirms that the reaction is plausible through the attack of deprotonated 2-PAM on the AChE-VX complex.
View Article and Find Full Text PDF

Exposure to organophosphorus compounds (OPs) may be fatal if untreated, and a clear and present danger posed by nerve agent OPs has become palpable in recent years. OPs inactivate acetylcholinesterase (AChE) by covalently modifying its catalytic serine. Inhibited AChE cannot hydrolyze the neurotransmitter acetylcholine leading to its build-up at the cholinergic synapses and creating an acute cholinergic crisis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!