A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule.

J Chem Phys

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.

Published: July 2011

A highly accurate, global dipole moment surface (DMS) is calculated for the water molecule using ab initio quantum chemistry methods. The new surface is named LTP2011 and is based on all-electron, internally contracted multireference configuration interaction, including size-extensivity corrections in the aug-cc-pCV6Z basis set. Dipoles are computed as energy derivatives and small corrections due to relativistic effects included. The LTP2011 DMS uses an appropriate functional form that guarantees qualitatively correct behaviour even for most high energies configuration (up to about 60,000 cm(-1)), including, in particular, along the water dissociation channel. Comparisons with high precision experimental data show agreement within 1% for medium-strength lines. The new DMS and all the ab initio data are made available in the supplementary material.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3604934DOI Listing

Publication Analysis

Top Keywords

dipole moment
8
moment surface
8
water molecule
8
global high
4
high accuracy
4
accuracy initio
4
initio dipole
4
surface electronic
4
electronic ground
4
ground state
4

Similar Publications

In this paper the finite-difference time-domain general vector auxiliary differential equation method [Opt. Express14, 8305 (2006)10.1364/OE.

View Article and Find Full Text PDF

Interstellar spectroscopic detection of HC(S)NC and DC(S)NC.

J Chem Phys

January 2025

Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, USA.

The detection of HC(S)CN in TMC-1 suggests that HC(S)NC may also exist. To aid in its possible detection, HC(S)NC and its deuterated isotopologue DC(S)NC were investigated via high-level ab initio methods, specifically CCSD(T) and CCSD(T)-F12. By utilizing multidimensional potential energy surfaces derived from explicitly correlated coupled-cluster calculations, we analyzed their geometrical parameters, vibrational frequencies, rotational constants, and a comprehensive set of spectroscopic constants generated via the vibrational second-order perturbation theory, vibrational self-consistent field, and vibrational configuration interaction theory(VCI) approaches.

View Article and Find Full Text PDF

We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.

View Article and Find Full Text PDF

This work is devoted to the study of the static magnetization of immobilized multi-core particles (MCPs) and their ensembles. These objects model aggregates of superparamagnetic nanoparticles that are taken up by biological cells and subsequently used, for example, as magnetoactive agents for cell imaging. In this study, we derive an analytical formula that allows us to predict the static magnetization of MCPs consisting of immobilized granules, in which the magnetic moment rotates freely the Néel mechanism.

View Article and Find Full Text PDF

Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!