Intensity fluctuations of laser light scattering were utilized in order to follow enhancement of translational motion of the actin-heavy meromyosin (HMM) complex in extremely dilute solutions accompanied by the hydrolysis of MgATP. Such enhancement was anticipated on the basis of the idea that active streaming along actin filaments should be associated with their mechanochemical reactivity. Native tropomyosin was added in order to stabilize actin in its filamentous form, thus allowing the reduction of actin concentration below 50 micrograms/ml to enable free movement of neighboring filaments and yet give a reliable signal. Analysis of the data in terms of Doppler broadening led to an approximate evaluation of the average velocity of translation of the mobile filaments. This velocity was found to increase with increasing HMM concentration up to a maximum attained at a molar ratio HMM/actin of 1:2, and then decreased. Total intensity measurements indicate that the mobile scatterer is actually a complex of HMM with an isolated actin filament. HMM subfragment-1 was found to be ineffective. These results suggest that cooperation between the two myosin heads is necessary for efficient induction of active streaming along isolated actin filaments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0167-4838(90)90025-bDOI Listing

Publication Analysis

Top Keywords

actin filaments
12
translational motion
8
doppler broadening
8
laser light
8
light scattering
8
active streaming
8
isolated actin
8
actin
6
filaments
5
motion actin
4

Similar Publications

Every heartbeat depends on cyclical contraction-relaxation produced by the interactions between myosin-containing thick and actin-based thin filaments (TFs) arranged into a crystalline-like lattice in the cardiac sarcomere. Therefore, the maintenance of thin filament length is crucial for myocardium function. The thin filament is comprised of an actin backbone, the regulatory troponin complex and tropomyosin that controls interactions between thick and thin filaments.

View Article and Find Full Text PDF

Energy-based modelling of single actin filament polymerization using bond graphs.

J R Soc Interface

January 2025

Department of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Melbourne, Melbourne, Victoria 3010, Australia.

Bond graphs provide an energy-based methodology for modelling complex systems hierarchically; at the moment, the method allows biological systems with both chemical and electrical subsystems to be modelled. Herein, the bond graph approach is extended to include chemomechanical transduction thus extending the range of biological systems to be modelled. Actin filament polymerization and force generation is used as an example of chemomechanical transduction, and it is shown that the (transformer) bond graph component provides a practical, and conceptually simple, alternative to the Brownian ratchet approach of Peskin, Odell, Oster and Mogilner.

View Article and Find Full Text PDF

Interaction and cleavage of cell and plasma proteins by the platelet-aggregating serine protease PA-BJ of Bothrops jararaca venom.

Biochimie

January 2025

Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil. Electronic address:

PA-BJ is a serine protease present in Bothrops jararaca venom that triggers platelet aggregation and granule secretion by activating the protease-activated receptors PAR-1 and PAR-4, without clotting fibrinogen. These receptors also have a relevant role in endothelial cells, however, the interaction of PA-BJ with other membrane-bound or soluble targets is not known. Here we explored the activity of PA-BJ on endothelial cell receptor, cytoskeleton, and coagulation proteins in vitro, and show the degradation of fibrinogen and protein C, and the limited proteolysis of actin, EPCR, PAR-1, and thrombomodulin.

View Article and Find Full Text PDF

Background: Patients with cancer undergoing cisplatin chemotherapy frequently experience cardiotoxic side effects that significantly affect their prognosis and survival rates. Our study found that Panax ginseng root extract exerted a significant protective effect against cisplatin-induced myocardial cell injury.

Purpose: The present study aims to elucidate the underlying mechanisms by which the bioactive components of Panax ginseng mitigate cisplatin-induced cardiotoxicity (CIC).

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!