Many important observations and discoveries in heart physiology have been made possible using the isolated heart method of Langendorff. Nevertheless, the Langendorff method has some limitations and disadvantages such as the vulnerability of the excised heart to contusions and injuries, the probability of preconditioning during instrumentation, the possibility of inducing tissue edema, and high oxidative stress, leading to the deterioration of the contractile function. To avoid these drawbacks associated with the use of a whole heart, we alternatively used beating mouse cardiac syncytia cultured in vitro in order to assess possible ergotropic, chronotropic, and inotropic effects of drugs. To achieve this aim, we developed a method based on image processing analysis to evaluate the kinematics and the dynamics of the drug-stimulated beating syncytia starting from the video recording of their contraction movement. In this manner, in comparison with the physiological no-drug condition, we observed progressive positive ergotropic, positive chronotropic, and positive inotropic effects of 10 µM isoproterenol (ß-adrenergic agonist) and early positive ergotropic, negative chronotropic, and positive inotropic effects of 10 µM phenylephrine (alpha-adrenergic agonist), followed by a late phase with negative ergotropic, positive chronotropic, and negative inotropic trends. Our method permitted a systematic study of in vitro beating syncytia, producing results consistent with previous works. Consequently, it could be used in in vitro studies of beating cardiac patches, as an alternative to Langendorff's heart in biochemical and pharmacological studies, and especially when the Langendorff technique is inapplicable (e.g., in studies about human cardiac syncytium in physiological and pathological conditions, patient-tailored therapeutics, and syncytium models derived from induced pluripotent/embryonic stem cells with genetic mutations). Furthermore, the method could be helpful in heart tissue engineering and bioartificial heart research to "engineer the heart piece by piece." In particular, the proposed method could be useful in the identification of a suitable cell source, in the development and testing of "smart" biomaterials, and in the design and use of novel bioreactors and microperfusion systems.

Download full-text PDF

Source
http://dx.doi.org/10.5301/IJAO.2011.8510DOI Listing

Publication Analysis

Top Keywords

inotropic effects
12
kinematics dynamics
8
beating cardiac
8
cardiac syncytium
8
langendorff method
8
heart
8
beating syncytia
8
positive ergotropic
8
ergotropic positive
8
positive chronotropic
8

Similar Publications

Foam rolling is widespread and deeply rooted in exercise practice. The optimal duration and role of this treatment still lack scientific consensus. A relatively novel foam rolling treatment that combines vibration during application targets different muscle characteristics that are not well understood.

View Article and Find Full Text PDF

Background: This observational study investigates the efficacy of combining local muscle vibration (LMV) therapy and kinesiotaping using the McConnell method (KMcCM) in patients with patellofemoral pain syndrome (PFPS). PFPS is a prevalent knee condition characterized by anterior or medial knee pain exacerbated by activities that overload the patellofemoral joint.

Objective: The primary aim of this study was to evaluate the effectiveness of LMV combined with KMcCM in reducing pain and improving function in PFPS patients.

View Article and Find Full Text PDF

Background: Lack of motivation and behavioral abnormalities are the hallmarks of postpartum depression (PPD). Severe uterine contractions during labor are pain triggers for psychiatric disorders, including PPD in women during the puerperium. Creating biomarkers to monitor PPD may help in its early detection and treatment.

View Article and Find Full Text PDF

Transcranial magnetic stimulation (TMS) has been used for many years to study the pathophysiology of amyotrophic lateral sclerosis (ALS). Based on single- or dual-pulse TMS and EMG and/or single motor unit (MU) recordings, many groups have described a loss of central inhibition as an early marker of ALS dysfunction, reflecting a state of cortical 'hyperexcitability'. This conclusion is not without its detractors, however, leading us to reexamine this issue using 4-pulse TMS, shown previously to be more effective for testing central motor pathway functional integrity.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!