Micro- and nanoscale engineering approaches in medicine have the potential to recreate physiologically relevant stem cell microenvironments to enhance our understanding of stem cell behaviour and bring stem cell therapy closer to fruition. The realization of such advancements will impact a number of therapeutic applications, the most immediate of which may be the repair of heart tissue. Despite profound advances in creating physiologically relevant in vivo stem cell niches through the control of biochemical regulatory factors, further synergism of innovative techniques promise to elucidate the impact of a number of physical cues such as stem cell differentiation into cardiac cells, the electromechanical coupling among these cells, and the formation of bioengineered cardiac tissue grafts. This review examines the recent physiologically relevant micro- and nanoengineering efforts that have been made to address these factors. In Sections II and III, we introduce the traditional focuses of stem cell derived cardiac tissue: differentiation directed by transcription factors and structural cues within the stem cell niche. However, the majority of this review, Sections IV-VII, endeavours to highlight innovative and unconventional microscale engineering techniques that have employed topographic, biomaterial, microfluidic, mechanical, electrical, and optical stimulation for stem cell based cardiac tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1lc20284gDOI Listing

Publication Analysis

Top Keywords

stem cell
36
cardiac tissue
16
physiologically relevant
12
stem
9
cell
9
impact number
8
cues stem
8
cardiac
5
tissue
5
engineered approaches
4

Similar Publications

Cytomegalovirus (CMV) infection in solid organ transplant (SOT) and hematopoietic cell transplant (HCT) recipients may increase the risk of rejection or allograft dysfunction, other infection(s), and morbidity and mortality. Treatment can be challenging due to medication-associated toxicities. Maribavir (MBV) is a promising option for the treatment of resistant or refractory (R/R) CMV infection in lieu of foscarnet (FOS), which has long been the recommended therapy for (val)ganciclovir-resistant infection.

View Article and Find Full Text PDF

Unlabelled: Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis.

View Article and Find Full Text PDF

Haematopoietic stem cell transplantation (HCT) induces profound immunosuppression, significantly increasing susceptibility to severe infections. This review examines vaccinations' necessity, timing, and efficacy post-HCT to reduce infection-related morbidity and mortality. It aims to provide a structured protocol aligned with international and national recommendations.

View Article and Find Full Text PDF

Background: Varicella can lead to severe complications in immunocompromised children, including those undergoing hematopoietic stem cell transplantation (HSCT) or chemotherapy. Preventing primary varicella zoster virus (VZV) infection is crucial in these populations to mitigate morbidity and mortality. This study aimed to evaluate the immunogenicity and safety of the live attenuated MAV/06 varicella vaccine in pediatric patients post-HSCT and post-chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!