One hundred three isolates of Carnobacterium spp. from raw meat were analyzed by random amplification of polymorphic DNA (RAPD) and PCR and were identified by 16S rRNA gene sequencing. Forty-five strains of Carnobacterium maltaromaticum were characterized for their growth capabilities at different temperatures, NaCl concentrations, and pH values and for in vitro lipolytic and proteolytic activities. Moreover, their spoilage potential in meat was investigated by analyzing the release of volatile organic compounds (VOCs) in meat stored in air or vacuum packs. Almost all the strains were able to grow at 4, 10, and 20°C, at pH values of 6 to 9, and in the presence of 2.5% NaCl. The release of VOCs by each strain in beef stored at 4°C in air and vacuum packs was evaluated by headspace solid-phase microextraction (HS-SPME)-gas chromatography-mass spectrometry (GC-MS) analysis. All the meat samples inoculated and stored in air showed higher numbers of VOCs than the vacuum-packed meat samples. Acetoin, 1-octen-3-ol, and butanoic acid were the compounds most frequently found under both storage conditions. The contaminated meat samples were evaluated by a sensory panel; the results indicated that for all sensory odors, no effect of strain was significant (P > 0.05). The storage conditions significantly affected (P < 0.05) the perception of dairy, spoiled-meat, and mozzarella cheese odors, which were more intense in meat stored in air than in vacuum packs but were never very intense. In conclusion, different strains of C. maltaromaticum can grow efficiently in meat stored at low temperatures both in air and in vacuum packs, producing volatile molecules with low sensory impacts, with a negligible contribution to meat spoilage overall.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194841 | PMC |
http://dx.doi.org/10.1128/AEM.05304-11 | DOI Listing |
Macromol Rapid Commun
January 2025
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan.
Here, "direct click bonding" of solid materials is proposed, which is the direct bonding of solid surfaces via the formation of covalent bonds without any adhesive. The present study shows that the Cu-free Huisgen 1,3-dipolar cycloaddition reaction proceeds between solid surfaces displaying cyclooctyne and azide groups, and it achieved the strong bonding of dissimilar solid materials as a macroscopic reaction. The bonding strength obtained is sufficiently high for practical use, and the strength can be controlled by the surface density of the cyclooctyne groups.
View Article and Find Full Text PDFFood Res Int
January 2025
Anhui Wangxiaolu Food Technology Co. Ltd, Chuzhou 239000, China. Electronic address:
The aim of this study was to investigate the differences of quality indexes, bacterial community and volatile organic compounds (VOCs) of industrial-scale tiger skin chicken feet (TSCF) under air packaging (AP) and vacuum packaging (VP). The results showed that the pH, total volatile basic nitrogen, total number of bacterial colony, and sensory scores in VP group changed less than those in AP group during the storage period. Different packaging conditions also had significant effects on bacterial community at the genus levels.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Mixed exhaled air has been widely used to determine exhaled propofol concentrations with online analyzers, but changes in dead space proportions may lead to inaccurate assessments of critical drug concentration data. This study proposes a method to correct propofol concentration in mixed air by estimating pulmonary dead space through reconstructing volumetric capnography (Vcap) from time-CO and time-volume curves, validated with vacuum ultraviolet time-of-flight mass spectrometry (VUV-TOF MS).
Methods: Existing monitoring parameters, including time-volume and time-CO curves, were used to determine Vcap.
ACS Appl Mater Interfaces
January 2025
Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping SE-60174, Sweden.
Here, the Fermi level () shifts of several donor and acceptor materials in different atmospheres are systematically studied by following the work function (WF) changes with Kelvin probe measurements, ultraviolet photoelectron spectroscopy, and near-ambient pressure X-ray photoelectron spectroscopy. Reversible shifts are found with the trend of higher WFs measured in ambient air and lower WFs measured in high vacuum compared to the WFs measured in ultrahigh vacuum. The shifts are energy level and morphology-dependent, and two mechanisms are proposed: (1) competition between p-doping induced by O and HO/O complexes and n-doping induced by HO; (2) polar HO molecules preferentially modifying the ionization energy of one of the frontier molecular orbitals over the other.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Dipartimento di Fisica G. Occhialini, Università Degli Studi di Milano-Bicocca, 20126 Milano, Italy.
The ASPECT-BET project, or An sdd-SPECTrometer for BETa decay studies, aims to develop a novel technique for the precise measurement of forbidden beta spectra in the 10 keV-1 MeV range. This technique employs a Silicon Drift Detector (SDD) as the main spectrometer with the option of a veto system to reject events exhibiting only partial energy deposition in the SDD. A precise understanding of the spectrometer's response to electrons is crucial for accurately reconstructing the theoretical shape of the beta spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!