Coevolution of retroelements and tandem zinc finger genes.

Genome Res

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.

Published: November 2011

Vertebrate genomes encode large and highly variable numbers of tandem C2H2 zinc finger (tandem ZF) transcription factor proteins. In mammals, most tandem ZF genes also encode a KRAB domain (KZNF proteins). Very little is known about what forces have driven the number and diversity of tandem ZF genes. Recent studies suggest that one role of KZNF proteins is to bind and repress transcription of exogenous retroviruses and their endogenous counterpart LTR retroelements. We report a striking correlation across vertebrate genomes between the number of LTR retroelements and the number of host tandem ZF genes. This correlation is specific to LTR retroelements and ZF genes and was not explained by covariation in other genomic features. We further show that recently active LTR retroelements are correlated with recent tandem ZF gene duplicates across vertebrates. On branches of the primate phylogeny, we find that the appearance of new families of endogenous retroviruses is strongly predictive of the appearance of new duplicate KZNF genes. We hypothesize that retroviral and LTR retroelement burden drives evolution of host tandem ZF genes. This hypothesis is consistent with previously described molecular evolutionary patterns in duplicate ZF genes throughout vertebrates. To further explore these patterns, we investigated 34 duplicate human KZNF gene pairs, all of which underwent an early burst of divergence in the major nucleotide contact residues of their ZF domains, followed by purifying selection in both duplicates. Our results support a host-pathogen model for tandem ZF gene evolution, in which new LTR retroelement challenges drive duplication and divergence of host tandem ZF genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205565PMC
http://dx.doi.org/10.1101/gr.121749.111DOI Listing

Publication Analysis

Top Keywords

tandem genes
20
ltr retroelements
16
host tandem
12
tandem
10
genes
9
zinc finger
8
vertebrate genomes
8
kznf proteins
8
tandem gene
8
ltr retroelement
8

Similar Publications

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Exploring the mechanisms of Yang Wei Shu granule for the treatment of chronic atrophic gastritis using UPLC-QTOF-MS/MS, network pharmacology, and cell experimentation.

J Ethnopharmacol

January 2025

College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Anhui Engineering Research Center for Quality Improvement and Utilization of Genuine Chinese Medicinal Materials, Hefei 230012 Anhui, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012 Anhui, China. Electronic address:

Article Synopsis
  • YWSG is an herbal compound derived from ancient Chinese medicine used for treating chronic atrophic gastritis (CAG), which can lead to gastric cancer.
  • The study aims to identify the chemical composition of YWSG and understand its mechanisms of action through advanced analytical techniques and network pharmacology.
  • Results revealed 150 compounds in YWSG, with several target genes identified as potential therapeutic targets, and experiments indicated that YWSG does not harm certain immune cells while inhibiting nitric oxide production.
View Article and Find Full Text PDF

Background: Leptospirosis is a widespread zoonosis caused by bacteria in the genus Leptospira. Basic epidemiological information is crucial to mitigating disease risk but is lacking for leptospirosis; notably, the hosts responsible for maintaining Leptospira remain largely unknown. Frequently observed near human habitations, hedgehogs (Erinaceus europaeus) are taken to wildlife rescue centres when found sick or injured.

View Article and Find Full Text PDF

Monkeypox (MPOX) is a zoonotic viral disease caused by the Monkeypox virus (MPXV), which has become the most significant public health threat within the genus since the eradication of the Variola virus (VARV). Despite the extensive attention MPXV has garnered, little is known about its clinical manifestations in humans. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was employed to investigate the transcriptional and metabolic responses of HEK293T cells to the MPXV A5L protein.

View Article and Find Full Text PDF

The razor clam , a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!