The Bcl-2 family encompasses a diverse set of apoptotic regulators that are dynamically activated in response to various cell-intrinsic and -extrinsic stimuli. An extensive variety of cell culture experiments have identified effects of growth factors, cytokines, and drugs on Bcl-2 family functions, but in vivo studies have tended to focus on the role of one or two particular members in development and organ homeostasis. Thus, the ability of physiologically relevant contexts to modulate canonical dependencies that are likely to be more complex has yet to be investigated systematically. In this study, we report findings derived from a pool-based shRNA assay that systematically and comprehensively interrogated the functional dependence of leukemia and lymphoma cells upon various Bcl-2 family members across many diverse in vitro and in vivo settings. This approach permitted us to report the first in vivo loss of function screen for modifiers of the response to a front-line chemotherapeutic agent. Notably, our results reveal an unexpected role for the extrinsic death pathway as a tissue-specific modifier of therapeutic response. In particular, our findings show that particular tissue sites of tumor dissemination play critical roles in demarcating the nature and extent of cancer cell vulnerabilities and mechanisms of chemoresistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165087PMC
http://dx.doi.org/10.1158/0008-5472.CAN-11-1014DOI Listing

Publication Analysis

Top Keywords

bcl-2 family
16
bcl-2
4
family genetic
4
genetic profiling
4
profiling reveals
4
reveals microenvironment-specific
4
microenvironment-specific determinants
4
determinants chemotherapeutic
4
response
4
chemotherapeutic response
4

Similar Publications

Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.

View Article and Find Full Text PDF

Callistephus chinensis Nees is an herbaceous plant in the Asteraceae family that has various traditional effects, especially in preventing liver disease. Callistephus A (CA) is a sesquiterpene compound with a rare 6/7 ring skeleton, which has been isolated only from the Callistephus chinensis Nees, but whether CA protects the liver is unknown. Immunological liver injury (ILI) is a common liver disease mediated by the immune system.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is prevalent among older cats. The transforming growth factor beta 1 (TGF-β1) pathway is associated with renal fibrosis. TGF-β1 signaling through the non-canonical/smad-independent pathway activates mitogen-activated protein kinase (MAPK) signaling, which is linked to fibrosis and apoptosis.

View Article and Find Full Text PDF

Bcl-2 and Bcl-xL in Diabetes: Contributions to Endocrine Pancreas Viability and Function.

Biomedicines

January 2025

Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Elche, Alicante, Spain.

Diabetes is a chronic metabolic disorder whose prevalence increases every year, affecting more than 530 million adults worldwide. Type 1 (T1D) and type 2 diabetes (T2D), the most common forms of diabetes, are characterized by the loss of functional pancreatic β-cells, mostly due to apoptosis. B-cell leukemia/lymphoma 2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL), two anti-apoptotic proteins belonging to the Bcl-2 family, are crucial for regulating the intrinsic pathway of apoptosis.

View Article and Find Full Text PDF

Apoptosis in Cancer Biology and Therapy.

Annu Rev Pathol

January 2025

Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; email:

Since its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!