The tumor microenvironment (TME) mediates immunosuppression resulting in tumor cell escape from immune surveillance and cancer vaccine failure. Immunosuppression is mediated by the STAT-3 transcription factor, which potentiates signaling in tumor and immune cells. Because immunosuppression continues to be a major inhibitor of cancer vaccine efficacy, we examined in this study whether therapeutically targeted delivery of a synthetic STAT-3 inhibitor to the TME, combined with an HER-2 DNA vaccine can improve immune surveillance against HER-2(+) breast cancer and prevent its recurrence. To this end, we developed a novel ligand-targeted nanoparticle (NP) encapsulating a CDDO-Im payload capable of specific delivery to the TME, which showed an effective therapeutic inhibition of STAT-3 activation in primary tumors. Furthermore, we showed that treatment with these NPs resulted in priming of the immune TME, characterized by increased IFN-γ, p-STAT-1, GM-CSF, IL-2, IL-15, and IL-12b and reduced TGF-β, IL-6, and IL-10 protein expression. In addition, we found significantly increased tumor infiltration by activated CD8(+) T cells, M1 macrophages, and dendritic cells. These changes correlated with delayed growth of orthotopic 4TO7 breast tumors and, when combined with an HER-2 DNA vaccine, prevented HER-2(+) primary tumor recurrence in immunocompetent mice. Furthermore, antitumor T-cell responses were enhanced in splenocytes isolated from mice treated with this combination therapy. Together, these data show effective protection from cancer recurrence through improved immune surveillance against a tumor-specific antigen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-11-1264 | DOI Listing |
PLoS One
January 2025
Department of Clinical Support Services, Division of Laboratory and Pathology Medicine, Uganda Cancer Institute, Kampala, Uganda.
Breast Cancer Res
December 2024
Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, 02129, USA.
Background: The HOXB13/IL17RB gene expression biomarker has been shown to predict response to adjuvant and extended endocrine therapy in patients with early-stage ER+ HER2- breast tumors. HOXB13 gene expression is the primary determinant driving the prognostic and endocrine treatment-predictive performance of the biomarker. Currently, there is limited data on HOXB13 expression in HER2+ and ER- breast cancers.
View Article and Find Full Text PDFJ Fluoresc
December 2024
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, 632 014, Vellore, Tamil Nadu, India.
The research article details the synthesis of chalcone-chromone-based scaffolds via multicomponent reactions. These compounds were characterized using conventional spectroscopic methods, including NMR (H and C), FT-IR, and HR-MS. Among the synthesized scaffolds, AZBNPy stood out, exhibiting exceptional DNA and protein targeting capabilities with superior binding parameters.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
"Clinical and Translational Research in Oncology" Group, Molecular Oncology Laboratory, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), 28040 Madrid, Spain.
Standard treatments in hormone receptor-positive (HR+)/HER2-metastatic breast cancer (mBC) typically involve endocrine therapy (ET) combined with CDK4/6 inhibitors, yet resistance to ET remains a persistent challenge in advanced cases. A deeper knowledge of the use of liquid biopsy is crucial for the implementation of precision medicine in mBC with real-time treatment guidance. Our study assesses the prognostic value of and mutations in DNA derived from extracellular vesicles (EV-DNA) in longitudinal plasma from 59 HR+/HER2-mBC patients previously exposed to aromatase inhibitors, with a comparative analysis against circulating tumor DNA (ctDNA).
View Article and Find Full Text PDFSignal Transduct Target Ther
December 2024
Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!