Ex vivo cancer chemoprevention research possibilities.

Environ Toxicol Pharmacol

Cancer Biomarkers and Prevention Group, Departments of Biochemistry and Cancer Studies and Molecular Medicine, Biocentre, University of Leicester, Leicester LE1 7RH, UK.

Published: February 2006

The concept of cancer prevention with naturally occurring or synthetic compounds is rapidly gaining momentum as a key field in cancer research. The availability of good models for the determination of the molecular mechanisms of these agents, which frequently have multiple sites of action within a cell, is key to the progression of the field. In this review, we concentrate on the emergence of several in vitro techniques that have significant advantages over more traditional monolayer cell culture, and/or in vivo models. In particular, we focus on the potential of 3D multicellular spheroid models as versatile intermediates between monolayer culture and tumours in situ. In these models, cell-cell interactions and cell-extracellular matrix interactions can closely mimic the environment to which tumour cells would be exposed in vivo, while maintaining the advantages of ease of manipulation of an in vitro system. The in vitro tube formation assay for the study of angiogenesis, the availability of human tissues for research, and the sophisticated technology surrounding DNA microarray and proteomics are also briefly discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2005.07.011DOI Listing

Publication Analysis

Top Keywords

vivo cancer
4
cancer chemoprevention
4
chemoprevention possibilities
4
possibilities concept
4
concept cancer
4
cancer prevention
4
prevention naturally
4
naturally occurring
4
occurring synthetic
4
synthetic compounds
4

Similar Publications

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.

Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.

View Article and Find Full Text PDF

Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.

Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!