Responsiveness of extracellular dopamine in the nucleus accumbens to systemic quinpirole and eticlopride is modulated by low-level lead exposure.

Environ Toxicol Pharmacol

Metro Public Health Department, 311 23rd Avenue North, Nashville, TN 37203, USA.

Published: February 2005

Environmental lead exposure has been linked to learning and memory impairments as well as psychosocial deficits in children. Although the precise mechanisms by which lead exerts these effects are not completely understood, experimental animal studies suggest the involvement of mesolimbic dopamine system. Here, we investigated the effects of post weaning, 90-day exposure to 50ppm lead on the responsiveness of extracellular dopamine in the nucleus accumbens core to quinpirole and eticlopride using in vivo microdialysis in anesthetized Long-Evans rats. Attenuation of dopamine release by 1mg/kg quinpirole was more pronounced in lead-exposed rats compared to control rats. In contrast, eticlopride did not significantly modulate extracellular dopamine in lead-exposed rats as it did in the control group. Taken together, these results provides further evidence that exposure to environmentally relevant levels of lead disrupts mesolimbic dopamine system function, at least in part, through perturbations of D(2) receptor systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2004.08.009DOI Listing

Publication Analysis

Top Keywords

extracellular dopamine
12
responsiveness extracellular
8
dopamine nucleus
8
nucleus accumbens
8
quinpirole eticlopride
8
lead exposure
8
mesolimbic dopamine
8
dopamine system
8
lead-exposed rats
8
dopamine
6

Similar Publications

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.

View Article and Find Full Text PDF

extract ameliorates motor dysfunc-tion in mouse Parkinsons disease model through inhibiting neuronal apoptosis.

Zhejiang Da Xue Xue Bao Yi Xue Ban

January 2025

School of Medicine, Hangzhou City University, Zhejiang Provincial Key Laboratory of Novel Targets and Drug Study for Neural Repair, Hangzhou 310015, China.

Objectives: To investigate the protective effects and underlying mechanisms of extract on motor dysfunction in mouse model of Parkinson's disease (PD).

Methods: Eighty C57BL/6 male mice were randomly divided into five groups: control group, PD model group, levodopa treatment group (positive control group), low-dose GP treatment group (LD-GP group), and high-dose GP treatment group (HD-GP group), with 16 mice per group. The PD model was induced by injection of 6-hydroxydopamine into the substantia nigra pars reticulata in mice of last 5 groups.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.

View Article and Find Full Text PDF

Detection of Human GPCR Activity in Drosophila S2 Cells Using the Tango System.

Int J Mol Sci

December 2024

Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Osaka 920-1192, Japan.

G protein-coupled receptors (GPCRs) are essential cell surface proteins involved in transducing extracellular signals into intracellular responses, regulating various physiological processes. This study validated the use of the Tango assay, a sensitive method for detecting GPCR activation, in Schneider 2 (S2) cells, focusing on the human Dopamine Receptor D4 (DRD4). Plasmids encoding the LexA-tagged human DRD4 receptor and a luciferase reporter were co-transfected into S2 cells and stimulated with dopamine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!