Nanoparticles delivery of oligonucleotides represents a potential approach for cancer treatment. However, most of the experiments were based on established cancer cell lines and may not reflect the original solid tumor in vivo. Both, tumor microenvironment and tumor cell biological properties in the tumor can influence the delivery efficiency of oligonucleotides. Therefore, it is important to understand the effect of nanoparticles delivery of oligonucleotides on tumor response in intact tissue architecture of individual tumors. We used freshly isolated human tumor tissue slices and primary lung cancer cells from non-small cell lung cancer patients to evaluate this nanocarrier system. Chitosan-coated poly(lactide-co-glycolide) (PLGA) nanoparticles were used to form oligonucleotide-nanoparticle-complexes (nanoplexes) with antisense 2'-O-methyl-RNA (OMR) that can inhibit telomerase activity by binding to the RNA component of telomerase. OMR cellular uptake was strongly enhanced by nanoplexes mediated delivery in both, primary cells and tissue slices. More than 80% of primary cancer cells and 50% of cells in tissue slices showed OMR uptake. Telomerase activity was inhibited by approximately 45% in primary cancer cells and about 40% in tissue slices. Nanoplexes could penetrate into tumor tissue without influencing tissue architecture and the delivered OMR was able to inhibit telomerase activity with relatively low cytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2011.07.009DOI Listing

Publication Analysis

Top Keywords

tissue slices
16
lung cancer
12
cancer cells
12
telomerase activity
12
tissue
8
antisense 2'-o-methyl-rna
8
nanoparticles delivery
8
delivery oligonucleotides
8
tissue architecture
8
tumor tissue
8

Similar Publications

Background: A biodegradable nonwoven fabric that can be used to extract adipose-derived stem cells (ADSCs) from adipose tissue slices was developed, which were cultured rapidly without enzymatic treatment. The extracted and cultured ADSCs remain on the nonwoven fabric and form a thick cell sheet. The aim was to use the thick cell sheet as a treatment by transplanting it into the living body.

View Article and Find Full Text PDF

Organoids, tissue slices and organotypic cultures: advancing our understanding of pancreatic ductal adenocarcinoma through in vitro and ex vivo models.

Semin Cancer Biol

December 2024

Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses of all common solid cancers. For the large majority of PDAC patients, only systemic therapies with very limited efficacy are indicated. In addition, immunotherapies have not brought the advances seen in other cancer types.

View Article and Find Full Text PDF

To clarify the cause of graded distribution of sucrose in apple fruit flesh, a quarter cut of young apple fruit was cultured for 72 h on agar-solidified MS medium supplemented with 0.5 M [1-C]sorbitol, with the longitudinal or horizontal cut face being attached with the medium, and distribution of C-labelled sucrose in a specimen obtained by slicing the fruit along with the cut face was visualized utilizing MALDI-TOF MSI. Heat map images on the distribution of the peaks of sorbitol containing C-atom indicated that external [1-C]sorbitol had penetrated evenly into the tissue.

View Article and Find Full Text PDF

Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials.

View Article and Find Full Text PDF

The achievable spatial resolution of C metabolic images acquired with hyperpolarized C-pyruvate is worse than H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution C cardiac MRI by utilizing structural information from H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice C MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!