AI Article Synopsis

  • Classical cadherins play a crucial role in regulating synapse formation and function, particularly N-cadherin at glutamatergic synapses, while the role of E-cadherin at inhibitory GABAergic synapses was less understood.
  • Researchers used a conditional knockout method on cultured cortical neurons from mice to study E-cadherin's role, inducing its knockout with an EGFP-Cre fusion protein.
  • The results showed that E-cadherin knockout led to fewer dendritic GABAergic synapses without affecting glutamatergic synapses, and electrophysiological tests confirmed functional impairments at GABAergic synapses due to the absence of E-cadherin.

Article Abstract

Classical cadherins are cell adhesion molecules that are thought to contribute to the control of synapse formation, synaptic transmission, and synaptic plasticity. This is largely based on studies investigating the functions of N-cadherin at glutamatergic synapses, whereas other classical cadherins have hardly been examined at central synapses. We have now used a conditional knockout approach in cultured cortical neurons to address the role of E-cadherin mainly at inhibitory, GABAergic synapses. Cortical neurons were cultured from mouse fetuses carrying floxed E-cadherin alleles in homozygous configuration. E-cadherin knockout was induced in individual neurons by expression of an EGFP-Cre fusion protein. Immunocytochemical stainings for the vesicular GABA (VGAT) and glutamate (VGLUT1) transporters revealed a reduced density of dendritic GABAergic synapses in E-cadherin knockout neurons, whereas glutamatergic synapses were unaffected. Electrophysiological recordings of miniature and action potential-evoked, GABA(A) receptor-mediated postsynaptic currents confirmed an impairment of GABAergic synapses at the functional level. In summary, our immunocytochemical and electrophysiological analysis of E-cadherin knockout neurons suggested that E-cadherin signaling importantly contributes to the regulation of GABAergic synapses in cortical neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2011.07.009DOI Listing

Publication Analysis

Top Keywords

gabaergic synapses
20
cortical neurons
16
e-cadherin knockout
12
synapses
8
cultured cortical
8
classical cadherins
8
glutamatergic synapses
8
synapses cortical
8
knockout neurons
8
e-cadherin
7

Similar Publications

MicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein.

View Article and Find Full Text PDF

Background/objectives: Internalizing disorders, including depression and anxiety, are major contributors to the global burden of disease. While the genetic architecture of these disorders in adults has been extensively studied, their early-life genetic mechanisms remain underexplored, especially in non-European populations. This study investigated the genetic mechanisms underlying internalizing symptoms in a cohort of Latin American children.

View Article and Find Full Text PDF

A global overview of shared genetic architecture between smoking behaviors and major depressive disorder in European and East Asian ancestry.

J Affect Disord

January 2025

Department of Environmental Genomics, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China. Electronic address:

Background: The co-occurrence of smoking behaviors and major depressive disorder (MDD) has been widely documented in populations. However, the underlying mechanism of this association remains unclear.

Methods: Genome-wide association studies of smoking behaviors and MDD, combined with multi-omics datasets, were usedto characterise genetic correlations, identify shared loci and genes, and explore underlying biological mechanisms.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!