A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic parameters of OPT pesticide desulfuration by c-DNA expressed human CYPs. | LitMetric

Kinetic parameters of OPT pesticide desulfuration by c-DNA expressed human CYPs.

Environ Toxicol Pharmacol

Comparative Toxicology and Ecotoxicology Laboratory, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy.

Published: July 2002

The role of different cytochrome P450 isoforms (CYPs) in the desulfuration of four organophosphorothionate pesticides (OPTs), namely diazinon (DIA), azinphos-methyl (AZ), chlorpyrifos (CPF) and parathion (PARA), at OPT levels representative of actual human exposure has been investigated. For this purpose c-DNA expressed human CYPs and a method, based on acetylcholinesterase (AChE) inhibition, able to detect nM levels of oxon have been used. Our results indicate that the four tested OPTs at low concentration were mainly desulfurated by CYP2B6, 2C19 and 1A2, showing K(m) values in the range 0.8-5 μM and the highest efficiency (intrinsic clearance (ICL)) values. CYP3A4 was generally endowed with high K(m) and resulted linear up to 25-100 μM OPT, concentrations saturating the most efficient CYPs. The tentative extrapolation of the relative contribution of single CYPs, taking into account the average content of different isoforms in the human liver, indicate that CYP1A2 is the major responsible for oxon formation. Indeed this CYP catalyses the 50-90% of desulfuration reaction, depending on the OPT. As CYP3A4 activity is not completely saturated up to 100 μM OPT, and due to the high hepatic content, its contribution to oxon formation may result relevant in poisoning episodes, when individuals are exposed at high doses of OPTs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1382-6689(02)00010-8DOI Listing

Publication Analysis

Top Keywords

c-dna expressed
8
expressed human
8
human cyps
8
μm opt
8
oxon formation
8
opt
5
cyps
5
kinetic parameters
4
parameters opt
4
opt pesticide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!