The bio-energy transport is a basic problem in life science and related to many biological processes. Therefore to establish the mechanism of bio-energy transport and its theory have an important significance. Based on different properties of structure of α-helical protein molecules some theories of bio-energy transport along the molecular chains have been proposed and established, where the energy is released by hydrolysis of adenosine triphosphate (ATP). A brief survey of past researches on different models and theories of bio-energy, including Davydov's, Takeno's, Yomosa's, Brown et al.'s, Schweitzer's, Cruzeiro-Hansson's, Forner's and Pang's models were first stated in this paper. Subsequently we studied and reviewed mainly and systematically the properties, thermal stability and lifetimes of the carriers (solitons) transporting the bio-energy at physiological temperature 300 K in Pang's and Davydov's theories. From these investigations we know that the carrier (soliton) of bio-energy transport in the α-helical protein molecules in Pang's model has a higher binding energy, higher thermal stability and larger lifetime at 300 K relative to those of Davydov's model, in which the lifetime of the new soliton at 300 K is enough large and belongs to the order of 10(-10) s or τ/τ(0)≥700. Thus we can conclude that the soliton in Pang's model is exactly the carrier of the bio-energy transport, Pang's theory is appropriate to α-helical protein molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plrev.2011.06.001DOI Listing

Publication Analysis

Top Keywords

bio-energy transport
24
protein molecules
16
α-helical protein
12
theories bio-energy
8
thermal stability
8
pang's model
8
bio-energy
7
transport
6
pang's
5
theory bio-energy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!