Iodine concentration of organic and conventional milk: implications for iodine intake.

Br J Nutr

Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.

Published: April 2012

Iodine is required for adequate thyroid hormone production, which is essential for brain development, particularly in the first trimester of pregnancy. Milk is the principal source of iodine in UK diets, and while small studies in Europe have shown organic milk to have a lower iodine concentration than conventional milk, no such study has been conducted in Britain. In view of the increasing popularity of organic milk in the UK, we aimed to compare the iodine concentration of retail organic and conventional milk and to evaluate regional influences in iodine levels. Samples of organic milk (n 92) and conventional milk (n 80), purchased from retail outlets in sixteen areas of the UK (southern England, Wales and Northern Ireland), were analysed for iodine using inductively coupled plasma MS. The region of origin of the milk was determined from information on the label. Organic milk was 42·1 % lower in iodine content than conventional milk (median iodine concentration 144·5 v. 249·5 ng/g; P < 0·001). There was no difference in the iodine concentration of either conventional or organic milk by area of purchase. However, a difference was seen in iodine concentration of organic milk by region of origin (P < 0·001). The lower iodine concentration of organic milk has public-health implications, particularly in view of emerging evidence of iodine deficiency in UK population sub-groups, including pregnant women. Individuals who choose organic milk should be aware that their iodine intake may be compromised and should ensure adequate iodine intake from alternative sources.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114511003059DOI Listing

Publication Analysis

Top Keywords

organic milk
32
iodine concentration
28
conventional milk
20
iodine
16
milk
15
concentration organic
12
iodine intake
12
lower iodine
12
organic
10
organic conventional
8

Similar Publications

Synthesis of a fluorophilic magnetic microporous organic network for selective enrichment of fipronil and ethiprole in milk and egg samples.

J Chromatogr A

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:

Considering the widespreadly use, large consumption, and serious environmental and health threats of phenylpyrazole insecticides (PPIs), development of a selective and sensitive method for accurate detection of their residuals in food samples is of great significance and challenging. Herein, depending on the hydrophobic and F-containing characteristics of PPIs, a novel fluorinated magnetic microporous organic network (FMMON) was designed and prepared for efficient and selective magnetic solid-phase extraction (MSPE) of two typical PPIs (fipronil and ethiprole) from milk and egg samples before the HPLC-UV determination. FMMON owned large specific surface area, multiple interaction sites, excellent magnetic separation performance and stability and exhibited good extraction and selectivity for fipronil and ethiprole through the specific F-F, hydrogen bonding, hydrophobic, and π-π interactions.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Effects of Replacing Inorganic Sources of Copper, Manganese, and Zinc with Different Organic Forms on Mineral Status, Immune Biomarkers, and Lameness of Lactating Cows.

Animals (Basel)

January 2025

Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

(Objectives) The objectives of this study were to evaluate the effect of half-replacement of the supplementary sulfate sources of Cu, Mn, and Zn with methionine-hydroxy-analog-chelated (MHAC) mineral or amino-acid-complexed (AAC) mineral forms in diets on the mineral status, blood immune biomarkers, and lameness of lactating cows. (Methods) Sixty multiparous Holstein cows (158 ± 26 days in milk; body weight: 665 ± 52 kg; milk yield: 32 ± 7 kg/day) were randomly assigned into one of three dietary treatments ( = 20 per group): (1) MHAC: 50% replacement of sulfate minerals with MHAC forms. (2) AAC: 50% replacement of sulfate minerals with AAC forms.

View Article and Find Full Text PDF

This research investigated the influence of the microencapsulation of phenolic compounds (PCs) from organic coffee husk with whey protein concentrate (WPC) and maltodextrin on the abundance of intestinal bacterial populations and their metabolic activity during in vitro fecal fermentation. The microencapsulated PCs were gradually metabolized during fecal fermentation, resulting in significant transformations and an increase in PCs in the fermentation media. The metabolism of PCs by the fecal microbiota occurred concurrently with the consumption of sugars, production of organic acids, and reduction in pH in the media.

View Article and Find Full Text PDF

Microbial fermentation of agro-industrial residues is gaining significant traction as a sustainable and economically viable approach in bioprocessing. This study explored lactic acid production from selected agro-industrial residues: pre-treated sugarcane waste, potato peel waste, or milk processing waste with alfalfa pellets using strains of organic origin. Five homo-fermentative strains (VITJ1, VITJ2, VITJ3, VITJ4, and VITJ5) were assessed for compatibility and formed into 15 consortia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!