In this work, we report highly uniform growth of template-assisted electrodeposited copper nanowires on a large area by lowering the deposition temperature down to subzero centigrade. Even with highly disordered commercial porous anodic aluminum oxide template and conventional potentiostatic electrodeposition, length uniformity over 95% can be achieved when the deposition temperature is lowered down to -2.4°C. Decreased diffusion coefficient and ion concentration gradient due to the lowered deposition temperature effectively reduces ion diffusion rate, thereby favors uniform nanowire growth. Moreover, by varying the deposition temperature, we show that also the pore nucleation and the crystallinity can be controlled.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3211979PMC
http://dx.doi.org/10.1186/1556-276X-6-467DOI Listing

Publication Analysis

Top Keywords

deposition temperature
16
length uniformity
8
template-assisted electrodeposited
8
95% large-scale
4
large-scale length
4
uniformity template-assisted
4
electrodeposited nanowires
4
nanowires subzero-temperature
4
subzero-temperature electrodeposition
4
electrodeposition work
4

Similar Publications

Characteristics of In Vivo Lesion Formation With a Temperature-Controlled Diamond-Tip Radiofrequency Ablation Catheter in the Ventricle: A Preclinical Model.

Circ Arrhythm Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (T.H., M.E.R., O.Y., G.N.K., N.O., T.K., L.N., D.L.P., K.C.S.).

Background: Power-controlled radiofrequency ablation with irrigated-tip catheters has been the norm for ventricular ablation for almost 2 decades. New catheter technology has recently integrated more accurate tissue temperature sensing enabling temperature-controlled irrigated ablation. We aimed to investigate the in vivo ablation parameters and lesion formation characteristics in ventricular myocardium using a novel temperature-controlled radiofrequency catheter.

View Article and Find Full Text PDF

Thiol-Enhanced Interfacial and Internal Deposition of Metal-Polyphenol Networks for Permanent Hair Dyeing.

ACS Biomater Sci Eng

January 2025

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.

Metal polyphenolic networks (MPNs) are becoming more and more attractive for nontoxic hair dyeing, but their coloring effect is not satisfactory because of the limited interfacial deposition and the absence of internal deposition. Moreover, there is a lack of understanding of the driving factors of the interfacial deposition of MPNs on hair. Herein, we develop a simple yet efficient strategy that transforms disulfide bonds of the hair into thiol groups by thioglycolic acid (TGA) to highly enhance the coloring effect of MPNs at a low temperature.

View Article and Find Full Text PDF

Chitosan- and sodium alginate-coated dendritic mesoporous organosilica nanoparticles improve pesticide adhesion on leaves and enable dual-stimulus-responsive release.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

During the application of most conventional pesticides, a significant proportion is lost through rain wash-off and leaf rolling, leading to reduced actual utilization efficiency. In this paper, aminated dendritic mesoporous organosilicon nanoparticles (DMONs-NH) were synthesized via a one-pot method and used as carriers. Carbendazim (CBZ) was then encapsulated within DMONs-NH through hydrogen bonding and electrostatic interactions.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Preparation of Silicon Nanopillar Arrays Using Reactive Ion Etching with a Faraday Cage.

ACS Appl Mater Interfaces

January 2025

Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.

Faraday cages are extensively utilized in plasma-based etching and deposition processes to regulate ion behavior due to their shielding effect on electromagnetic fields. Herein, vertical silicon nanopillar arrays are fabricated through SF and O reactive ion etching. By incorporation of a Faraday cage in the plasma equipment, the impact of the Faraday cage on the morphology of the silicon nanopillars is analyzed; the Faraday cage blocks out the sputtered particles and eradicates the formation of silicon nanograss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!