In plants, stem cells reside in apical meristems, and provide the descendants required for post-embryonic growth and development throughout the life of a plant. To identify a novel factor required for the maintenance of stem cells, we isolated an Arabidopsis mutant, named meristem disorganization 1-1 (mdo1-1), that exhibits several developmental defects, such as abnormal phyllotaxy and plastochron, stem fasciation and retarded root growth. We found that the mutant plants fail to maintain stem cells, resulting in the differentiation or death of stem cells. The mutant plants also showed several phenotypes related to DNA damage, suggesting that the mutant cells are exposed constitutively to DNA damage even without external genotoxic stress. The growth defect and the hypersensitivity to DNA-damaging agents of mdo1-1 were enhanced significantly when combined with a lesion of the ATAXIA-TELANGIECTASIA MUTATED (ATM) gene, but not of the ATM/RAD3-RELATED (ATR) gene, suggesting that the function of the MDO1 gene is closely related to that of ATM kinase. The MDO1 gene encodes an unknown protein that is conserved in a wide variety of land plants. The results thus suggested that the MDO1 gene product is required for the maintenance of stem cells through a reduction in DNA damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2011.04718.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!