A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. | LitMetric

The brain is highly vulnerable to oxidative stress, thus controlling oxidative stress is considered to be an important therapeutic target for neurodegenerative diseases. In this study, we found that two isoflavone metabolites (tectorigenin and glycitein) inhibited hydrogen peroxide-induced reactive oxygen species (ROS) generation and subsequent cell death in rat primary astrocytes. The isoflavone metabolites increased the expression of phase II antioxidant enzymes, such as hemeoxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1), and pre-treatment of cells with their specific inhibitors or small interfering RNA (siRNA) reversed the antioxidant and cytoprotective effects of isoflavones. The results suggest that the antioxidant/cytoprotective effects of isoflavone metabolites are at least because of increased HO-1 and NQO1 expression. Further mechanistic studies revealed that isoflavones increase the binding of transcription factors [nuclear factor-E2-related factor 2 (Nrf2) and c-Jun] to the antioxidant response element (ARE) on HO-1 and NQO1 promoters. Down-regulation of Nrf2 and/or c-Jun using dominant-negative mutants (DNMs) or siRNA diminished the expression of HO-1 and NQO1, suggesting that Nrf2 and c-Jun are key transcription factors modulating HO-1/NQO1 expression. Moreover, PI3 kinase and mitogen-activated protein kinase (MAPK) signaling pathways were shown to be involved in HO-1 and/or NQO1 expression by isoflavones. Our data collectively suggest that HO-1 and NQO1 play a critical role in antioxidant effects of isoflavone metabolites in rat brain astrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2011.07395.xDOI Listing

Publication Analysis

Top Keywords

isoflavone metabolites
20
ho-1 nqo1
16
nqo1 expression
12
rat primary
8
primary astrocytes
8
critical role
8
oxidative stress
8
metabolites increased
8
effects isoflavone
8
transcription factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!