A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Immobilization of silver in polypropylene membrane for anti-biofouling performance. | LitMetric

Immobilization of silver in polypropylene membrane for anti-biofouling performance.

Biofouling

Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.

Published: August 2011

In this study, a method was developed to immobilize silver onto polypropylene (PP) membrane surfaces for improved anti-biofouling performance. A commercial PP membrane was first grafted with the thiol functional groups, and then silver ions were immobilized onto the PP membrane surface through coordinating with the thiol groups. The immobilized silver was found to be very stable, with only ~1.1% of the immobilized silver being leached out during a leaching test. The surface of the modified membrane (PPS-Ag) was examined with ATR-FTIR and XPS analysis, which verified the successful grafting of the thiol groups and the coordination of silver ions on the membrane surface. The surface properties of the membrane were also characterized by SEM, AFM and water contact angle measurements. The PPS-Ag membrane was found to have a smoother and more hydrophilic surface than the PP membrane. Both Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Staphylococcus aureus, were used to evaluate the antibacterial and anti-biofouling performance of the PPS-Ag membrane. From disk diffusion experiments, the PPS-Ag membrane exhibited the capability of inhibiting the growth of both the Gram-negative and Gram-positive bacteria tested. The anti-biofouling performance of the membrane was assessed by immersion in a mixed suspension of E. coli and S. aureus and filtration tests. The PPS-Ag membrane showed a stable and significantly enhanced anti-biofouling performance as compared with the PP membrane. The results in this study demonstrate that biofouling of a PP membrane can be sufficiently overcome through immobilizing silver onto the membrane surface.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2011.603830DOI Listing

Publication Analysis

Top Keywords

anti-biofouling performance
20
membrane
16
pps-ag membrane
16
membrane surface
12
silver polypropylene
8
polypropylene membrane
8
silver ions
8
thiol groups
8
immobilized silver
8
gram-positive bacteria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!