Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Attachment and proliferation of NIH-3T3 fibroblast cells on random polymer surfaces, polystyrene sulfonated acid (PSSAx) with five different degrees of sulfonation (x = 0%, 5%, 10%, 15% and 33%) and on a tissue culture polystyrene (TCPS) surface were studied. The surface properties, wettability and roughness were measured by water-contact angle and atomic force microscopy measurement. The wettability and surface roughness increased with increasing the content of sulfonic acid groups on the surfaces. The number of cells attached on the surface after seeding increased with increasing x and reached to the maximum value on PSSA15. The cell proliferation also increased with increasing x. However, cell proliferation was slow down on PSSA33 in comparison to PSSA10 and PSSA15 surfaces after 48 h culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.3675 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!