In situ synthesis of ordered mesoporous silica materials embedded in cotton fiber and their CO2 capture properties.

J Nanosci Nanotechnol

Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Published: May 2011

Mesoporous silica/cotton fiber composite materials have been prepared in situ by using pluronics P123 (EO20PO70EO20) as template, tetraethyl orthosilicate as silica source and degreasing cotton as supporter. In order to avoid the hydrolysis of cotton fiber in a strong acidic media during the hydrothermal treatment, two kinds of methods were used to control the acidity of the reaction media. One was to adjust the pH to 5 after self-assembly in a strong acidic media; the other was a two-step route containing the pre-hydrolysis of TEOS and self-assembly in a weak acidic media. The resulting shaped composite materials presented the morphology of cotton fiber, and the silica particles mainly covered the surfaces of cotton fibers. These silica particles possessed a slightly ordered pore structure or a well ordered SBA-15 structure according to the difference in the synthetic methods. After modification with tetraethylenepentamine, these shaped composite materials exhibited considerable CO2 adsorption capacity. The use of cotton fiber has the advantages of shaping the powdery materials, dispersing the silica particles and avoiding the formation of moisture and sticky solid surfaces by overloaded tetraethylenepentamine.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.3830DOI Listing

Publication Analysis

Top Keywords

cotton fiber
16
composite materials
12
acidic media
12
silica particles
12
strong acidic
8
shaped composite
8
cotton
6
silica
5
materials
5
fiber
5

Similar Publications

Genotypic difference in response to copper stress in upland cotton as revealed by physiological and molecular expression analyses.

BMC Plant Biol

January 2025

Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.

Background: Cotton is a non-edible fiber crop with considerable potential for the remediation of copper-polluted soil. However, the Cu toxicity tolerance mechanism in cotton remains largely obscure. To address the issue, we first identified two cotton lines contrasting in response to Cu toxicity by examining 12 morphological and physiological attributes of 43 origin scattered cotton genotypes under Cu excess.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a radiative cooling textile (PAC@T) inspired by flamingo feathers, using polyacrylonitrile and alumina particles to enhance cooling and comfort.
  • PAC@T achieves high solar reflectance (95%) and mid-infrared emissivity (91.8%), resulting in effective cooling that is 6.1°C cooler than traditional textiles.
  • The textile is made from common materials and offers advantages like durability and energy-free operation, posing significant potential for future industrial applications in personal thermoregulation.
View Article and Find Full Text PDF

Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection.

Int J Biol Macromol

December 2024

Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Article Synopsis
  • Designed a new type of catalyst using a unique Lous-leaf-inspired nanoarchitecture that prevents contamination and improves efficiency in disinfection processes.
  • Utilized hydrophilic polydopamine to help create a special coating on cotton fabric that interacts well with contaminants and boosts antibacterial action, all without needing extra chemicals.
  • Achieved over 99% antibacterial effectiveness against E. coli even after multiple washes, demonstrating strong resistance and the ability to tackle common challenges in catalytic reactions.
View Article and Find Full Text PDF

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

Perioperative hypothermia is a frequent clinical complication resulting from the cold environment of the operating room and prolonged skin exposure, leading to adverse outcomes and increased healthcare burdens. To address this issue, this narrative review discusses in detail the currently common warming strategies for perioperative hypothermia .Forced air warming (FAW) systems are widely recognized as the most effective intervention for maintaining core body temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!