Bone formation is essential to orthodontic tooth movement and bone is formed by collagen. To analyze the collagen maturation process on bone matrix neoformed under nonsteroidal and steroidal treatment during orthodontic tooth movement by polarized microscopy, male Wistar rats (n = 90) were randomly divided into three groups (n = 30): C (control), NSAID (potassium diclofenac) and SAID (disodic phosphate dexamethasone). The animals of the C group received 0.9% saline solution; NSAID group received 5 mg/kg potassium diclofenac (CATAFLAM®); and SAID group received 2 mg/kg phosphate dissodic dexamethasone (DEXANIL®). Animals were sacrificed 3, 7 or 14 days after the placement of orthodontic appliances and the upper first molars were processed histologically and stained with picrosirius. Bone formation was evaluated under polarized light microscopy and 4.5 Image Pro-Plus® software calculated the percentage of immature/mature collagen present in the groups. On the third days after force application, SAID and NSAID groups showed greater proportion of immature collagen than C group. On the seventh and fourteenth days, there was a lower proportion of mature collagen only in the SAID group (P < 0.001). These data demonstrate that dexamethasone delays the collagen maturation process in established bone matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20947DOI Listing

Publication Analysis

Top Keywords

collagen maturation
12
maturation process
12
orthodontic tooth
12
tooth movement
12
group received
12
movement bone
8
bone formation
8
bone matrix
8
potassium diclofenac
8
received mg/kg
8

Similar Publications

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Type IV collagen expression is regulated by Notch3-mediated Notch signaling during angiogenesis.

Biochem Biophys Res Commun

January 2025

Graduate School of Engineering, Kogakuin University, Tokyo, Japan; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Tokyo, Japan. Electronic address:

Angiogenesis, the process of new blood vessel formation, involves endothelial cell proliferation and migration, accompanied by the remodeling of the extracellular matrix (ECM). Type IV collagen, a major ECM component, plays a critical role in vascular basement membrane regeneration, influencing cell polarity, migration, and survival. This study examines the regulatory role of Notch signaling, mediated by Notch3, in type IV collagen expression using TIG-1 fibroblasts and a co-culture angiogenesis model with human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

During surgical procedures, skin and soft tissue wounds are often infected by resistant strains of gram-positive bacteria and gram-negative bacteria, resulting in serious obstacles to the healing of these wounds. Commercially available dressings for such wounds are still insufficient to combat resistant infections. Here, we designed vancomycin and epigallocatechin gallate (EGCG) loaded poly(vinyl)-pyrrolidone-gelatine nanofiber's membrane dressing for potential synergistic efficiency against infected post-surgical wounds.

View Article and Find Full Text PDF

Diabetic periodontitis presents a unique therapeutic challenge, primarily due to its chronic inflammatory profile and the associated bone loss driven by immune dysregulation. Metformin (Met) is recognized for its potent anti-inflammatory properties, yet its limited cellular uptake has hindered its clinical effectiveness in diabetic periodontitis. A tetrahedral framework nucleic acid (tFNA)-based delivery system is developed to enhance Met cellular uptake and investigate its effects on diabetic periodontitis in this study.

View Article and Find Full Text PDF

Background: The utilization of decellularized extracellular matrix (dECM) derived from animal testis tissue has demonstrated potential as a component of tissue-specific scaffolds. Current research is mostly centered around dECM as a natural resource for culturing testicular cells. This study aimed to assess firstly the comparison of Voytik-Harbin (VH) and Frytes protocol in creating Ram's dECM testis hydrogel and secondly the evaluation of the best protocol effect on spermatogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!