Purpose: To characterize the DDIF (Decay due to Diffusion in the Internal Field) method using intact animal trabecular bone specimens of varying trabecular structure and porosity, under ex vivo conditions closely resembling in vivo physiological conditions. The DDIF method provides a diffusion contrast which is related to the surface-to-volume ratio of the porous structure of bones. DDIF has previously been used successfully to study marrow-free trabecular bone, but the DDIF contrast hitherto had not been tested in intact specimens containing marrow and surrounded by soft tissue.
Materials And Methods: DDIF imaging was implemented on a 4.7 Tesla (T) small-bore, horizontal, animal scanner. Ex vivo results on fresh bone specimens containing marrow were obtained at body temperature. Control measurements were carried out in surrounding tissue and saline.
Results: Significant DDIF effect was observed for trabecular bone samples, while it was considerably smaller for soft tissue outside the bone and for lipids. Additionally, significant differences were observed between specimens of different trabecular structure.
Conclusion: The DDIF contrast is feasible despite the reduction of the diffusion constant and of T(1) in such conditions, increasing our confidence that DDIF imaging in vivo may be clinically viable for bone characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144507 | PMC |
http://dx.doi.org/10.1002/jmri.22612 | DOI Listing |
J Am Podiatr Med Assoc
January 2025
*Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
Background: Ankle fractures continue to increase in incidence and severity in an older, more challenging geriatric population. Medial malleolus fixation with partially threaded cancellous 4.0-mm screws, a common fixation method, has been shown to fail due to pullout strength.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Hospital of Stomatogy, Jilin University, Changchun, China.
The posterior mandible is the primary area for occlusal function. However, long-term tooth loss in the posterior mandible often leads to rapid absorption of both buccal and lingual trabecular bone plates and subsequent atrophy of the alveolar ridge. This ultimately results in horizontal bone deficiencies that complicate achieving an optimal three-dimensional placement for dental implants.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
Osteonecrosis of the femoral head (ONFH) is a prevalent orthopedic disorder characterized primarily by compromised blood supply. This vascular deficit results in cell apoptosis, trabecular bone loss, and structural collapse of the femoral head at late stage, significantly impairing joint function. While MRI is a highly effective tool for diagnosing ONFH in its early stages, challenges remain due to the limited availability and high cost of MRI, as well as the absence of routine MRI screening in asymptomatic patients.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.
The most common type of proximal humerus fracture is surgical neck fracture. The purpose of this paper is to study the mechanical mechanism and the effect of bone degeneration on humeral surgical neck fractures. The right humerus finite element models were established based on CT computed tomography.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA. Electronic address:
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!