Purpose: To investigate the roles that B and T lymphocyte attenuator (BTLA) and herpesvirus entry mediator (HVEM) play in the development of antigen-induced experimental conjunctivitis (EC).
Methods: BALB/c mice were immunized with ragweed (RW) in alum. Ten days later, the mice were challenged with RW in eye drops. After 24 hours, the conjunctivas, blood and spleens were collected for histological analysis, measurement of serum immunoglobulin (Ig) levels, and both flow cytometric analysis and cytokine assays, respectively. The mice were injected intraperitoneally with anti-BTLA antibody, anti-HVEM antibody or control antibody during either induction phase or effector phase.
Results: Induction-phase treatment with anti-BTLA antibody but not anti-HVEM antibody significantly increased conjunctival eosinophil infiltration. Treatment with either antibody during the effector phase did not affect conjunctival eosinophil infiltration. Anti-BTLA antibody treatment during the induction phase reduced the B cell compartment and increased the CD11b-positive cell compartment in splenocytes. Additionally, anti-BTLA treatment upregulated IL-4 and IL-10 production of splenocytes stimulated by RW.
Conclusions: BTLA regulated the development of EC possibly by downregulating Th2 cytokine production and adjusting the compartments of immunocompetent cells. The regulation of EC by BTLA may be mediated by BTLA ligands other than HVEM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00417-011-1695-8 | DOI Listing |
Immunotargets Ther
January 2025
CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France.
Purpose: The co-inhibitory receptor B and T Lymphocyte Attenuator (BTLA) negatively regulates B and T cell activation. We have previously shown an altered BTLA expression by regulatory T cells and an impaired capacity of BTLA to inhibit CD4 T cell activation in lupus patients. In this study, we analyzed BTLA expression and function in the NZB/W lupus-mouse model and examined the therapeutic potential of BTLA targeting.
View Article and Find Full Text PDFNat Commun
February 2024
Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, 200040, Shanghai, China.
B- and T-lymphocyte attenuator (BTLA) levels are increased in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). This condition is characterized by susceptibility to infection and T-cell immune exhaustion. However, whether BTLA can induce T-cell immune exhaustion and increase the risk of infection remains unclear.
View Article and Find Full Text PDFTransplant Proc
April 2024
Department of Cardiovascular Surgery, Teikyo University, Tokyo, Japan.
Background: We demonstrated that an agonistic anti-B and T lymphocyte attenuator antibody (3C10) prolonged cardiac survival by inducing regulatory T cells (Treg). However, the mechanisms of immune tolerance in the recipients remained unclear. In this study, we investigated the graft-protective and intercellular immunomodulatory effects of adoptive transfer (AT) of 3C10-induced Tregs in a murine cardiac allograft transplant model.
View Article and Find Full Text PDFCancers (Basel)
January 2024
Division of Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, 20141 Milan, Italy.
High microsatellite instability (MSI-H) derives from genomic hypermutability due to deficient mismatch repair function. Colorectal (CRC) and endometrial cancers (EC) are the tumor types that more often present MSI-H. Anti-PD(L)-1 antibodies have been demonstrated to be agnostically effective in patients with MSI-H cancer, but 50-60% of them do not respond to single-agent treatment, highlighting the necessity of expanding their treatment opportunities.
View Article and Find Full Text PDFMol Cancer
August 2023
Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!