The grapevine-infecting vitiviruses, with particular reference to grapevine virus A.

Arch Virol

The Vitis Laboratory, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.

Published: September 2011

A number of vitiviruses infect grapevine, arguably the most important fruit crop, and the host from which they derive their genus name. In contrast to most grapevine viruses, the etiological role of these viruses is unclear, albeit that they are associated with several well-known--and a number of emerging--diseases of grapevine. Here, we review the genus Vitivirus, with special reference to its most omnipresent member, grapevine virus A. We discuss the latest taxonomic status of the genus, as well as the genome and genomic organisation, replication mechanism, and genetic variability of GVA, and we also present the latest research progress with vitivirus-based vectors; the identification of a new vitivirus, GVE, the discovery of VIGG, a unique GVA-induced host protein, the molecular characterisation of hitherto unknown or puzzling genetic elements in the GVA genome, and the latest developments in vitivirus diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-011-1071-3DOI Listing

Publication Analysis

Top Keywords

grapevine virus
8
grapevine
5
grapevine-infecting vitiviruses
4
vitiviruses reference
4
reference grapevine
4
virus number
4
number vitiviruses
4
vitiviruses infect
4
infect grapevine
4
grapevine arguably
4

Similar Publications

Grapevine Pinot gris virus (GPGV) is an emerging grapevine virus associated with grapevine leaf mottling and deformation (GLMD) disease. Being a recently identified virus, the molecular biology, pathological properties, and etiological complexity of GPGV remain poorly studied. Previous research revealed that GPGV comprises genetically different variants, some encoding a larger movement protein (MP) and others a shorter MP due to a C/T polymorphic site in ORF2 encoding MP.

View Article and Find Full Text PDF

Quarantine and certification programs exist to prevent the entry or spread of harmful pests and pathogens into agricultural systems. Their common objective is to identify pathogen-free source material through the application of validated testing methods for subsequent release for propagation. Tests must be accurate, efficient and cost-effective.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine.

View Article and Find Full Text PDF

High-Throughput Sequencing Identified Multiple Fig Viruses and Viroids Associated with Fig Mosaic Disease in Iraq.

Plant Pathol J

October 2024

Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia.

Mosaic is the most common viral disease affecting fig plants. Although the Fig mosaic virus is the leading cause of mosaic disease, other viruses are also involved. High-throughput sequencing was used to assess viral infections in fig plants with mosaic.

View Article and Find Full Text PDF

The grapevine fleck virus (GFkV) is a ubiquitous grapevine-infecting virus found worldwide, is associated with the grapevine fleck complex, and is often found in mixed infections with viruses of the grapevine leafroll complex and/or vitiviruses. Although GFkV has been studied for a long time, limited sequence information is available in the public databases. In this study, the GFkV sequence data available in GenBank and data generated at the Foundation Plant Services, University of California, Davis, were used to perform nucleotide sequence comparisons, construct a phylogenetic tree, and develop a new RT-qPCR assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!