Both stability and catalytic activity of two commercial immobilized lipases were investigated in the presence of different organic solvents in ultrasound-assisted system. In a general way, for Novozym 435, the use of ethanol as solvent led to a loss of activity of 35% after 10 h of contact. The use of iso-octane conducted to a gradual increase in lipase activity in relation to the contact time, reaching a maximum value of relative activity of 126%. For Lipozyme RM IM, after 5 h of exposure, the enzyme presented no residual activity when ethanol was used as solvent. The solvents tert-butanol and iso-octane showed an enhancement of about 20 and 17% in the enzyme activity in 6 h of exposure, respectively. Novozym 435 and Lipozyme IM presented high stability to storage after treatment under ultrasound-assisted system using n-hexane and tert-butanol as solvents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-011-0573-4 | DOI Listing |
Prep Biochem Biotechnol
January 2025
Department of Physical Science, Sant Baba Bagh Singh University, Jalandhar, Punjab, India.
Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China. Electronic address:
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.
View Article and Find Full Text PDFMar Drugs
January 2025
ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia.
Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy. Electronic address:
This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity. The esterification of undecanoic acid, lauric acid, and oleic acid with alcohols of varying chain lengths (ethanol, 1-propanol, 1-butanol, 1-octanol, 1-decanol, and 1-dodecanol) was studied.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China.
The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!