Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154026 | PMC |
http://dx.doi.org/10.1038/nchem.1087 | DOI Listing |
Sci Rep
March 2023
Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
Tirandamycin (TAM B) is a tetramic acid antibiotic discovered to be active on a screen designed to find compounds with neuroprotective activity. The producing strain, SBST2-5, is an actinobacterium that was isolated from wastewater treatment bio-sludge compost collected from Suphanburi province, Thailand. Taxonomic characterization based on a polyphasic approach indicates that strain SBST2-5 is a member of the genus Streptomyces and shows low average nucleotide identity (ANI) (81.
View Article and Find Full Text PDFACS Catal
July 2021
Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Department of Medicinal Chemistry, Department of Chemistry, and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States.
Iterative P450 enzymes are powerful biocatalysts for selective late-stage C-H oxidation of complex natural product scaffolds. These enzymes represent useful tools for selectivity and cascade reactions, facilitating direct access to core structure diversification. Recently, we reported the structure of the multifunctional bacterial P450 TamI and elucidated the molecular basis of its substrate binding and strict reaction sequence at distinct carbon atoms of the substrate.
View Article and Find Full Text PDFMar Drugs
May 2021
Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
ACS Catal
November 2020
Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
Biocatalysis offers an expanding and powerful strategy to construct and diversify complex molecules by C─H bond functionalization. Due to their high selectivity, enzymes have become an essential tool for C─H bond functionalization and offer complementary reactivity to small-molecule catalysts. Hemoproteins, particularly cytochromes P450, have proven effective for selective oxidation of unactivated C─H bonds.
View Article and Find Full Text PDFMicroorganisms
December 2020
Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, C/Zacarías González 2, 37007 Salamanca, Spain.
Actinomycetes constitute a large group of Gram-positive bacteria present in different habitats. One of these habitats involves the association of these bacteria with insects. In this work, we have studied twenty-four actinomycetes strains isolated from the intestinal tract and feces from larvae of the xylophagous coleopteran and have shown that seventeen strains present hydrolytic activity of some of the following substrates: cellulose, hemicellulose, starch and proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!