Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Bone marrow-derived cells may play a role in tissue injury and repair. Growth factors facilitate the mobilization of bone marrow-derived cells to the site of injury.
Objectives: The aim of this study was to determine the effect of the mobilization of autologous bone marrow-derived cells by granulocyte colony-stimulating factor (CSF3) on bleomycin-induced lung injury in mice.
Methods: The bone marrow from male green fluorescent protein transgenic (C57Bl/6J) mice was transplanted into irradiated female C57Bl/6J mice. Bleomycin lung injury was induced in these bone marrow-reconstituted mice and unreconstituted C57Bl/6J mice, and some mice were treated with recombinant CSF3. Lung histology, survival, cytokine expression and matrix metalloproteinase (MMP) expression were evaluated to determine the effect of CSF3 after bleomycin-induced lung injury.
Results: Histology and flow cytometry analysis showed successful mobilization of bone marrow-derived cells by CSF3 treatment in the recipient lungs. Importantly, CSF3 attenuated bleomycin-induced lung injury and improved survival. Furthermore, CSF3 administration regulated transforming growth factor-β, interferon-γ, MMP9 and tissue inhibitors of MMP1 expression during bleomycin injury.
Conclusions: These data demonstrated that the mobilization of bone marrow-derived cells by CSF3 has a protective effect against bleomycin-induced lung injury and fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000328762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!