AI Article Synopsis

  • Fetal hypertrophic marker gene β-myosin heavy chain (β-MyHC) increases in response to pressure overload hypertrophy, particularly in rodents, where it is found primarily in enlarged myocytes.
  • A study involving flow cytometry on isolated myocytes from male C57BL/6J mice after transverse aortic constriction (TAC) showed that β-MyHC-positive myocytes rose from 3% in control hearts to 25% post-TAC, while these myocytes were consistently smaller than those without β-MyHC.
  • Findings indicate that β-MyHC is expressed in a small subset of smaller myocytes, challenging traditional beliefs about hypertrophic responses as these cells are

Article Abstract

Rationale: Induction of the fetal hypertrophic marker gene β-myosin heavy chain (β-MyHC) is a signature feature of pressure overload hypertrophy in rodents. β-MyHC is assumed present in all or most enlarged myocytes.

Objective: To quantify the number and size of myocytes expressing endogenous β-MyHC by a flow cytometry approach.

Methods And Results: Myocytes were isolated from the left ventricle of male C57BL/6J mice after transverse aortic constriction (TAC), and the fraction of cells expressing endogenous β-MyHC was quantified by flow cytometry on 10,000 to 20,000 myocytes with use of a validated β-MyHC antibody. Side scatter by flow cytometry in the same cells was validated as an index of myocyte size. β-MyHC-positive myocytes constituted 3 ± 1% of myocytes in control hearts (n=12), increasing to 25 ± 10% at 3 days to 6 weeks after TAC (n=24, P<0.01). β-MyHC-positive myocytes did not enlarge with TAC and were smaller at all times than myocytes without β-MyHC (≈70% as large, P<0.001). β-MyHC-positive myocytes arose by addition of β-MyHC to α-MyHC and had more total MyHC after TAC than did the hypertrophied myocytes that had α-MyHC only. Myocytes positive for β-MyHC were found in discrete regions of the left ventricle in 3 patterns: perivascular, in areas with fibrosis, and in apparently normal myocardium.

Conclusions: β-MyHC protein is induced by pressure overload in a minor subpopulation of smaller cardiac myocytes. The hypertrophied myocytes after TAC have α-MyHC only. These data challenge the current paradigm of the fetal hypertrophic gene program and identify a new subpopulation of smaller working ventricular myocytes with more myosin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166391PMC
http://dx.doi.org/10.1161/CIRCRESAHA.111.243410DOI Listing

Publication Analysis

Top Keywords

flow cytometry
12
β-myosin heavy
8
heavy chain
8
pressure overload
8
expressing endogenous
8
endogenous β-myhc
8
myocytes
6
β-myhc
5
chain induced
4
induced pressure
4

Similar Publications

An 8 yr old, male, mixed-breed dog was presented with a 2 mo history of progressive weakness, worsened in the last 2 days before examination. Neurological examination revealed ambulatory tetraparesis, ataxia, and proprioceptive deficits in all four limbs. Menace response was reduced in the right eye and discomfort was detected on neck manipulation.

View Article and Find Full Text PDF

Study Question: Is elevated plasma molybdenum level associated with increased risk for idiopathic premature ovarian insufficiency (POI)?

Summary Answer: Elevated plasma molybdenum level is associated with an increased risk of idiopathic POI through vascular endothelial injury and inhibition of granulosa cell proliferation.

What Is Known Already: Excessive molybdenum exposure has been associated with ovarian oxidative stress in animals but its role in the development of POI remains unknown.

Study Design, Size, Duration: Case-control study of 30 women with idiopathic POI and 31 controls enrolled from August 2018 to May 2019.

View Article and Find Full Text PDF

Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion.

PLoS Negl Trop Dis

January 2025

Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali.

Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species.

View Article and Find Full Text PDF

In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.

View Article and Find Full Text PDF

Modeling the lymph node stromal cells in oral squamous cell carcinoma: insights into the stromal cues in nodal metastasis.

Hum Cell

January 2025

Integrated Head and Neck Oncology Program (DSRG-5), Mazumdar Shaw Medical Foundation, Narayana Health, Bangalore, India.

The study explores the development and characterization of lymph node stromal cell cultures (LNSCs) from patients with oral squamous cell carcinoma (OSCC), highlighting the importance of understanding tumor-node cross-talk for effective prognostic and therapeutic interventions. Herein, we describe the development and characterization of primary lymph node stromal cells (LNSCs, N = 14) from nodes of metastatic and non-metastatic OSCC patients. Primary cultures were established by the explant method from positive (N + ; N = 2), and negative nodes (N0; N = 4) of the metastatic patients (N = 3) as well as negative (N0; N = 8) nodes from non-metastatic (N = 4) patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!