Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3193012 | PMC |
http://dx.doi.org/10.1093/jxb/err206 | DOI Listing |
Cien Saude Colet
January 2025
Instituto de Saúde. São Paulo SP Brasil.
Nuclear Medicine plays an important role in the management of patients with chronic diseases, especially oncological and cardiovascular conditions. In this study, an analysis of the evolution of this field in Brazil was conducted within the framework of the Unified Health System. Retrospective analyses from 2015 to 2021 of public data were performed.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
Pepper (Capsicum spp.) is a widely consumed vegetable with exceptionally large genomes in Solanaceae, yet its genomic evolutionary history remains largely unknown. Here we present 11 high-quality Capsicum genome assemblies, including two gap-free genomes, covering four wild and all five domesticated pepper species.
View Article and Find Full Text PDFPLoS One
January 2025
Human Biology & Primate Cognition Department, Institute of Biology, Leipzig University, Leipzig, Germany.
The Facial Action Coding System (FACS) is an objective observation tool for measuring human facial behaviour. It avoids subjective attributions of meaning by objectively measuring independent movements linked to facial muscles, called Action Units (AUs). FACS has been adapted to 11 other taxa, including most apes, macaques and domestic animals, but not yet gorillas.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Psychology, Lyon College, Batesville, Arkansas, United States of America.
There has been an increased interest in standardized approaches to coding facial movement in mammals. Such approaches include Facial Action Coding Systems (FACS), where individuals are trained to identify discrete facial muscle movements that combine to create a facial configuration. Some studies have utilized FACS to analyze facial signaling, recording the quantity of morphologically distinct facial signals a species can generate.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Univ. Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France.
During recent years, much progress has been made in understanding the origin and evolution of the dog. Thanks to the collaboration between zooarchaeology, genomics and paleogenetics, researchers were able to hypothesize scenarios regarding the origins of the canine lineages present in Europe at the end of the Pleistocene and the beginning of the Holocene. Research has also shown a correlation between human and canine migration across time and space, highlighting a strong relationship between man and his best friend.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!