Purpose: The purpose of this paper is to suggest guidelines for target-dose conformity in gamma knife stereotactic radiosurgery (GKSRS) by taking into account factors that have been linked to GKSRS complications. We also suggest an explanation for the failure of previous studies to find a correlation between improved conformity index and reduced risk of GKSRS toxicity, where the conformity index, C(S), is defined as the ratio of the prescription volume, V(P), to the target volume, V(T).
Methods: Previous investigations have shown that symptomatic toxicity in GKSRS is correlated with the volume of nontarget tissue receiving the prescription dose, D(P). In this study, we formulated the volume of nontarget tissue, V(NTD), receiving dose D < or = D(P) as a function of the target volume, prescription volume, and prescription dose. We verified the model for D = 12-15 Gy by comparing VNTD calculated from the model versus VNTD calculated directly for 114 tumors in 63 consecutive patients treated at our institution. Once verified, we used this formulation of V(NTD) to calculate the volume of nontarget tissue receiving doses between 12 and 15 Gy from published data reported for patients experiencing varying degrees of GKSRS toxicity. Next, assuming that the VNTD values calculated for those patients who had either no toxicity or mild neurological symptoms in the published study represented safe levels of normal tissue irradiated to the dose in question, we substituted these V(NTD) values into an equation expressing C(S) in terms of V(NTD), V(T), and D(P), and examined how C(S) varied as a function of V(T) and D(P).
Results: The R2 value for the correlation between VNTD calculated directly or calculated with the proposed formula for VNTD ranged from 0.98 to 0.99, indicating that the formula accurately models the behavior of the nontarget volume receiving dose D. Applying this formulation of VNTD to historical data suggested that the requirements V(NT15) < or = 2.2 cm3, V(NT14) < or = 2.6 cm3, V(NT13) < or = 3.1 cm3 and V(NT12) < or = 3.8 cm3 minimize the risk of severe complications following GKSRS. Imposing these criteria imply that as the target size increases, delivering a given prescription dose requires increasing target-dose conformity. For tumor sizes >5 cm3 C(S) must be < or = 1.2 to restrict V(NTD) to the values listed above. For very small targets, on the other hand, nearly any reasonable conformity index will lead to acceptable values of V(NTD). These observations may explain why previous investigations failed to show a correlation between improved conformity and decreased toxicity in GKSRS, because in these earlier studies the range of conformity indices represented was not wide enough, in particular C(S) values <1.3 were not represented for large tumors.
Conclusions: Our model suggests that for target volumes > or = 3 cm3, high levels of target-dose conformity (C(S) < 1.3) are required for typical GKSRS prescription doses in order to limit VNTD to levels associated with either no toxicity or mild neurological symptoms in a previous investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3582945 | DOI Listing |
Technol Cancer Res Treat
January 2025
Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, PR China.
Purpose: To evaluate the impact of patient setup errors on the dosimetry and radiobiological models of intensity-modulated radiotherapy (IMRT) for esophageal cancer.
Methods And Materials: This retrospective study with 56 patients in thermoplastic mask (TM) and vacuum bag (VB) groups utilized real setup-error (RSE) data from cone-beam CT scans to generate simulated setup-error (SSE) data following a normal distribution. The SSE data were applied to simulate all treatment fractions per patient by shifting the plan isocenter and recalculating the dose.
J Radiat Res
January 2025
Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
Dynamic WaveArc (DWA) is a technique used for continuous, non-coplanar volumetric-modulated arc therapy on the Vero4DRT platform. This study aimed to evaluate the application of single-isocenter DWA (SI-DWA) for treating multiple brain metastases by comparing dose distribution and irradiation time with multi-isocenter DWA (MI-DWA) through retrospective treatment planning. Treatment plans were developed for SI-DWA and MI-DWA in 14 cases with 3-5 brain metastases.
View Article and Find Full Text PDFArXiv
November 2024
Department of Radiation Oncology, University of Kansas Medical Center, USA.
Objective: Proton spot-scanning arc therapy (ARC) is an emerging modality that can improve the high-dose conformity to targets compared with standard intensity-modulated proton therapy (IMPT). However, the efficient treatment delivery of ARC is challenging due to the required frequent energy changes during the continuous gantry rotation. This work proposes a novel method that delivers a multiple IMPT (multi-IMPT) plan that is equivalent to ARC in terms of biologically effective dose (BED).
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2024
Department of Radiation Oncology, Chung-Ang University Gwang Myeong Hospital, Gyeonggi-do, Republic of Korea.
Purpose: This study aimed to assess the dosimetric advantages of dual arc increments in head and neck volumetric-modulated arc therapy (VMAT) in the Monaco treatment planning system (TPS).
Methods: Three VMAT plans were created for each of the 10 patients by prescribing 70 Gy in 35 fractions with arc increment combinations of 30°/30°, 15°/15°, and 30°/15° in the Monaco TPS. The dose to 0.
BMC Cancer
November 2024
Radiation Physics Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
Objective: To evaluate the benefits of volumetric modulated arc therapy (VMAT) based on multicriteria optimization (MCO) for gastric cancer patients, particularly the protection of serial organs at risk (OARs) that overlap with the target volume.
Methods: MCO and single-criterion optimization (SCO) VMAT plans were conducted among 30 gastric cancer patients, with a prescription dose of 50.4 Gy delivered in 28 fractions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!