Biosynthesis of silver nanoparticles using sun-dried mulberry leaf.

J Nanosci Nanotechnol

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.

Published: April 2011

The biosynthesis of silver nanoparticles (AgNPs) has been successfully conducted by reduction of silver nitrate with sun-dried mulberry leaf. Such AgNPs have been characterized by UV-visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM). The results showed that such dispersed, uniform and spherical AgNPs would not aggregate under high-concentration NaCl solution and have good antibacterial activity. It was suggested that the polyol components (such as polyhydroxylated alkaloids) and protein residues of mulberry leaf should be mainly responsible for the stabilization of AgNPs. Such AgNPs produced by the environmentally friendly method have the potential for use in antibacterial and medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2011.3811DOI Listing

Publication Analysis

Top Keywords

mulberry leaf
12
biosynthesis silver
8
silver nanoparticles
8
sun-dried mulberry
8
agnps
5
nanoparticles sun-dried
4
leaf biosynthesis
4
nanoparticles agnps
4
agnps conducted
4
conducted reduction
4

Similar Publications

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

V6 encoded by mulberry crinkle leaf virus is important for viral DNA replication.

Virology

January 2025

School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212100, China. Electronic address:

Mulberry crinkle leaf virus (MCLV) is a representative species of the genus Mulcrilevirus in the family Geminiviridae. Here, we identified an additional V6 ORF which embedded within the V4 ORF in the MCLV virion-sense strand. The expression of V6 was confirmed by analyzing the promoter activity of V6 ORF upstream sequences and quantifying the viral DNA accumulation in V6-mutant MCLV-infected tomato plants.

View Article and Find Full Text PDF

Although, the impact of mulberry leaves on mortality of Bombyx mori [silkworm] and cocooning rates has been investigated, limited research has exploited the influence on the quality of B. mori pupae. This study evaluated the effects of four mulberry cultivars (Ichinose, Noi-EX-Thailand, Ex-Thika and Victory1) on the nutritional quality of B.

View Article and Find Full Text PDF

Biological Characteristics and Fungicide Screening of Causing Mulberry Anthracnose.

Microorganisms

November 2024

Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Mulberry is an important economic crop in China that is widely planted and has important edible and medicinal value. Anthracnose, a critical leaf disease, severely compromises the yield and quality of mulberry trees. However, there are many kinds of pathogens causing mulberry anthracnose and it is difficult to control.

View Article and Find Full Text PDF

Genomic Analysis Reveals Novel Genes and Adaptive Mechanisms for Artificial Diet Utilization in the Silkworm Strain Guican No.5.

Insects

December 2024

Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China.

The transition from traditional mulberry leaf feeding to artificial diet cultivation represents a major advancement in modern sericulture, yet the genetic mechanisms driving this adaptation remain largely unexplored. This study investigates the genomic basis of artificial diet adaptation in the silkworm strain Guican No.5 through whole-genome resequencing and transcriptome analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!