Water soluble, thioglycolic acid (TGA) modified CdSe nanocrystals (NCs) have been prepared in aqueous media by the reaction between Cd2+ and NaHSe. Although initially these quantum dots (QDs) display photoluminescence (PL) with very low quantum yields (QY), upon prolonged exposure to ambient light, a strong PL enhancement by illumination is observed which leads to water soluble QDs with high luminescence. This result may have important application potential in biological or other fields. The primary reason for the luminescence enhancement is concluded to be the incorporation of sulfide ions from TGA into the lattice of CdSe NCs and the subsequent formation of alloy structures. Moreover, the CdSe/CdS core-shell structured QDs synthesized in aqueous solutions also consolidate this conclusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2011.3602 | DOI Listing |
Nanomaterials (Basel)
December 2024
Theoretical Physical Chemistry, UR MOLSYS, University of Liege, B4000 Liège, Belgium.
Dynamical symmetries, time-dependent operators that almost commute with the Hamiltonian, extend the role of ordinary symmetries. Motivated by progress in quantum technologies, we illustrate a practical algebraic approach to computing such time-dependent operators. Explicitly we expand them as a linear combination of time-independent operators with time-dependent coefficients.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Chemistry, University of California, Berkeley, California 94720, United States.
The utilization of excited charge carriers in semiconductor nanocrystals (NCs) for optoelectronic technologies has been a long-standing goal in the field of nanoscience. Experimental efforts to extend the lifetime of excited carriers have therefore been a principal focus. To understand the limits of these lifetimes, in this work, we theoretically study the time scales of pure electron relaxation in negatively charged NCs composed of two prototypical materials: CdSe and CdS.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Physics and Meteorology, School of Sciences, Sao Paulo State University (UNESP), Bauru, Sao Paulo 17033-360, Brazil.
The presence of toxic dyes in industrial waste dramatically diminishes the beneficial effects of remediation efforts. To overcome the hazardous impacts of dyes on biodiversity and environment, we integrated polymers into nanoparticles to substantially enhance their functionality and performance. 2 and 4 wt% of chitosan (CS) and 3 wt% of polyacrylic acid (PAA) doped cadmium selenide (CdSe) nanostructures (NSs) were prepared by co-precipitation approach.
View Article and Find Full Text PDFLuminescence
December 2024
School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
This study presents a mild, one-pot synthetic approach for the synthesis of multicolor, water soluble, photo luminescent CdS and CdSe quantum dots (QDs). To achieve this goal, cyclic peptides containing cysteine residues are rationally designed and synthesized. Among the peptides tested, those containing two cysteine residues exhibit superior stabilizing properties, ensuring the solubility and long-term stability of the QDs in aqueous solutions for several months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!