Co(III) sarcophagine-type cage molecules, [Co(diCLsar)](3+) or [Co(HONOsar)](3+), form either 1 : 1 or 1 : 2 host-guest inclusion complexes with mono-phosphonium cations and sodium p-sulfonatocalix[4]arene in the solid state yielding complex I [p-sulfonatocalix[4]arene·Co(diCLsar)·2{benzyltriphenylphosphonium}], complex II [2{p-sulfonatocalix[4]arene}·Co(diCLsar)·3{tetraphenylphosphonium}] and complex III [p-sulfonatocalix[4]arene·Co(HONOsar)·tetraphenylphosphonium]. The diversity of the structural types of these multi-component systems, including the orientation of the Co(III) molecules in the cavities of the calixarenes, depends on the nature of their terminal functional groups. The secondary coordination interactions binding between the Co(III) molecules and p-sulfonatocalix[4]arene have also been investigated in water using NMR techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1dt10550gDOI Listing

Publication Analysis

Top Keywords

coiii molecules
8
site specific
4
coiii
4
specific coiii
4
coiii sarcophagine
4
sarcophagine binding
4
binding multi-component
4
multi-component phosphonium
4
phosphonium p-sulfonatocalix[4]arene
4
p-sulfonatocalix[4]arene systems
4

Similar Publications

Density functional theory (DFT) calculations indicate that [Co(HO)] reacts with two HO molecules to form [(HO)Co(OOH)(HO)] reactant complexes, which decompose through three distinct pathways depending on the relative orientation between the coordinated OOH and HO ligands. The reactive intermediates produced via these activation pathways include hydroperoxyl (OOH)/superoxide (O) radicals, singlet oxygen (O), and Co(III) species [(HO)Co(O)], [(HO)Co(OH)], and [(HO)Co(OH)]. The Co(III) species display from moderate to strong oxidizing abilities that have long been overlooked.

View Article and Find Full Text PDF

Metalloporphyrins have been widely utilized as building blocks for molecular self-assembly in organic solvents, but their application in water is less common due to competition from water molecules for the metal center. However, Co(III) metalloporphyrins are notable for their strong binding to two aromatic amine ligands in aqueous buffers. In this study, we present a comprehensive investigation of the binding behavior of Co(III) tetraphenyl sulfonic acid porphyrin with selected aromatic and aliphatic amines in aqueous solution.

View Article and Find Full Text PDF

Disulfide is an important organic reagent and synthetic intermediate that is widely used in organic synthesis, polymers, and other fields, but its synthesis still suffers from many environmental pollution and economic problems. Here, we present an environmentally friendly and efficient base-free aerobic oxidative thiol coupling catalyzed by heterogeneous CoO nanoclusters entrapped in hierarchical silicalite-1 zeolite, synthesized by combining silane pore expansion and metal coordination methods under hydrothermal conditions. It is confirmed that open hierarchical channels favor mass diffusion, and the chemical valence of Co species in CoO/-S-1-H is +2, which is different from that of CoO particles in CoO/-S-1-I.

View Article and Find Full Text PDF

Recent advances enabled the discovery of heterometallic molecules for many metals: main group, d-block, lanthanides, and some actinides (U, Th). These complexes have at least two different metals joined by bridging ligands or by direct metal-metal bonding interactions. They are attractive because they can enable chemical cooperativity between metals from different parts of the periodic table.

View Article and Find Full Text PDF

Synthesizing molecules with significant topological features, such as catenanes, tailored with specific groups to confer desired functionality, is essential for investigating various properties arising from the entanglement due to mechanical bonds. This investigation can pave the way for uncovering novel functional materials employing mechanically interlocked molecules (MIMs). In this direction, we have synthesized a π-donor (D) and π-acceptor (A) functionalized [2]catenane using a non-labile Co(III) metal ion as a template with pyridine-diamide templating center and utilizing click reaction for ring-closing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!