Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load.

J Immunol

South African Tuberculosis Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.

Published: September 2011

High Ag load in chronic viral infections has been associated with impairment of Ag-specific T cell responses; however, the relationship between Ag load in chronic Mycobacterium tuberculosis infection and functional capacity of M. tuberculosis-specific T cells in humans is not clear. We compared M. tuberculosis-specific T cell-associated cytokine production and proliferative capacity in peripheral blood from adults with progressively higher mycobacterial loads-that is, persons with latent M. tuberculosis infection (LTBI), with smear-negative pulmonary tuberculosis (TB), and smear-positive TB. Patients with smear-positive TB had decreased polyfunctional IFN-γ(+)IL-2(+)TNF-α(+) and IL-2-producing specific CD4 T cells and increased TNF-α single-positive cells, when compared with smear-negative TB and LTBI. TB patients also had increased frequencies of M. tuberculosis-specific CD8 T cells, compared with LTBI. M. tuberculosis-specific CD4 and CD8 T cell proliferative capacity was profoundly impaired in individuals with smear-positive TB, and correlated positively with ex vivo IFN-γ(+)IL-2(+)TNF-α(+) CD4 T cells, and inversely with TNF-α single-positive CD4 T cells. During 6 mo of anti-TB treatment, specific IFN-γ(+)IL-2(+)TNF-α(+) CD4 and CD8 T cells increased, whereas TNF-α and IFN-γ single-positive T cells decreased. These results suggest progressive impairment of M. tuberculosis-specific T cell responses with increasing mycobacterial load and recovery of responses during therapy. Furthermore, these data provide a link between specific cytokine-producing subsets and functional capacity of M. tuberculosis-specific T cells, and between the presence of specific CD8 T cells ex vivo and active TB disease. These data have potentially significant applications for the diagnosis of TB and for the identification of T cell correlates of TB disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159795PMC
http://dx.doi.org/10.4049/jimmunol.1101122DOI Listing

Publication Analysis

Top Keywords

functional capacity
12
cell responses
12
cd4 cells
12
cd8 cells
12
cells
10
tuberculosis-specific cell
8
mycobacterial load
8
load chronic
8
tuberculosis infection
8
capacity tuberculosis-specific
8

Similar Publications

Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.

View Article and Find Full Text PDF

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Antarctic nematodes survival in Martian and Lunar regolith simulants under terrestrial conditions.

An Acad Bras Cienc

January 2025

Universidade de Brasília, Laboratório de Criptógamas, Departamento de Botânica, Campus Universitário Darcy Ribeiro, Bloco D, 1° Andar, 70910-900 Brasília, DF, Brazil.

The exploration of extraterrestrial environments has become a focal point of scientific inquiry, driven by advancements in technology and a growing interest in the potential for life beyond Earth. This study investigates the adaptability of Antarctic nematodes, known for thriving in extreme cold and isolation, to simulated Martian (MGS-1) and Lunar (LMS-1) soils. The experiment revealed differential responses in nematode survivability to the two simulants, with Lunar soil demonstrating better adaptability compared to Martian soil.

View Article and Find Full Text PDF

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Background: The causes of reduced aerobic exercise capacity (ExCap) in chronic kidney disease (CKD) are multifactorial, possibly involving the accumulation of tryptophan (TRP) metabolites such as kynurenine (KYN) and kynurenic acid (KYNA), known as kynurenines. Their relationship to ExCap has yet to be studied in CKD. We hypothesised that aerobic ExCap would be negatively associated with plasma levels of TRP, KYN and KYNA in CKD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!