Previous studies suggested that the cellular prion protein (PrP(c)) plays a critical role in the pathogenesis of Alzheimer's disease (AD). Specifically, amyloid-β (Aβ) oligomers were proposed to cause synaptic and cognitive dysfunction by binding to PrP(c). To test this hypothesis, we crossed human amyloid precursor protein (hAPP) transgenic mice from line J20 onto a PrP(c)-deficient background. Ablation of PrP(c) did not prevent the premature mortality and abnormal neural network activity typically seen in hAPPJ20 mice. Furthermore, hAPPJ20 mice with or without PrP(c) expression showed comparably robust abnormalities in learning and memory and in other behavioral domains at 6-8 months of age. Notably, these abnormalities are not refractory to therapeutic manipulations in general: they can be effectively prevented by interventions that prevent Aβ-dependent neuronal dysfunction also in other lines of hAPP transgenic mice. Thus, at least in this model, PrP(c) is not an important mediator of Aβ-induced neurological impairments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314063PMC
http://dx.doi.org/10.1523/JNEUROSCI.1459-11.2011DOI Listing

Publication Analysis

Top Keywords

transgenic mice
12
cellular prion
8
prion protein
8
abnormal neural
8
neural network
8
network activity
8
cognitive dysfunction
8
human amyloid
8
amyloid precursor
8
precursor protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!