Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells by using plant DNA polymerases. These viruses encode a protein designated AL1, Rep, or AC1 that is essential for viral replication. AL1 is an oligomeric protein that binds to double-stranded DNA, catalyzes the cleavage and ligation of single-stranded DNA, and induces the accumulation of host replication machinery. It also interacts with several host proteins, including the cell cycle regulator retinoblastoma-related protein (RBR), the DNA replication protein PCNA (proliferating cellular nuclear antigen), and the sumoylation enzyme that conjugates SUMO to target proteins (SUMO-conjugating enzyme [SCE1]). The SCE1-binding motif was mapped by deletion to a region encompassing AL1 amino acids 85 to 114. Alanine mutagenesis of lysine residues in the binding region either reduced or eliminated the interaction with SCE1, but no defects were observed for other AL1 functions, such as oligomerization, DNA binding, DNA cleavage, and interaction with AL3 or RBR. The lysine mutations reduced or abolished virus infectivity in plants and viral DNA accumulation in transient-replication assays, suggesting that the AL1-SCE1 interaction is required for viral DNA replication. Ectopic AL1 expression did not result in broad changes in the sumoylation pattern of plant cells, but specific changes were detected, indicating that AL1 modifies the sumoylation state of selected host proteins. These results established the importance of AL1-SCE1 interactions during geminivirus infection of plants and suggested that AL1 alters the sumoylation of selected host factors to create an environment suitable for viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3196459PMC
http://dx.doi.org/10.1128/JVI.02566-10DOI Listing

Publication Analysis

Top Keywords

dna
9
replication protein
8
sumo-conjugating enzyme
8
required viral
8
viral infection
8
plant cells
8
host proteins
8
dna replication
8
viral dna
8
selected host
8

Similar Publications

Prognostic significance of serum complement activation, neutrophil extracellular traps and extracellular DNA in newly diagnosed epithelial ovarian cancer.

Gynecol Oncol

January 2025

Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.

Purpose: We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes.

Experimental Design: We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188).

View Article and Find Full Text PDF

Efficient differentiation between Pullorum and Gallinarum by a -based PCR-HRM.

Avian Pathol

January 2025

Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, People's Republic of China.

Pullorum (. Pullorum) and Gallinarum (. Gallinarum) are the biovars of serovar Gallinarum that are responsible for pullorum disease and fowl typhoid in poultry, respectively.

View Article and Find Full Text PDF

Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.

Per Med

January 2025

Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!