Cells in the suprachiasmatic nucleus (SCN) display remarkable precision, while either physically or chemically decoupling these cells from each other leads to a dramatic increase in period-to-period variability. Where previous studies have classified cells as either arrhythmic or circadian, our wavelet analysis reveals that individual cells, when removed from network interactions, intermittently express circadian and/or longer infradian periods. We reproduce the characteristic period distribution of uncoupled SCN cells with a stochastic model of the uncoupled SCN cell near a bifurcation in Bmal1 transcription repression. This suggests that the uncoupled cells may be switching between 2 oscillatory mechanisms: the indirect negative feedback of protein complex PER-CRY on the expression of Per and Cry genes, and the negative feedback of CLOCK-BMAL1 on the expression of the Bmal1 gene. The model is particularly sensitive near this bifurcation point, with only a small change in Bmal1 transcription repression needed to switch from the stable precision of coupled SCN cells to the unstable oscillations of decoupled individual cells, making this rate constant, an ideal target for cell signaling in the SCN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472003PMC
http://dx.doi.org/10.1177/0748730411409863DOI Listing

Publication Analysis

Top Keywords

cells
8
individual cells
8
uncoupled scn
8
scn cells
8
bmal1 transcription
8
transcription repression
8
negative feedback
8
scn
5
wavelet measurement
4
measurement suggests
4

Similar Publications

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Shape-Dependent Structural Order of Red Blood Cells.

Langmuir

January 2025

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.

In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells.

View Article and Find Full Text PDF

Comparative Study of Iminodibenzyl and Diphenylamine Derivatives as Hole Transport Materials in Inverted Perovskite Solar Cells.

Chemistry

January 2025

Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.

Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!