Cardiac-induced physiological noise in 3D gradient echo brain imaging: effect of k-space sampling scheme.

J Magn Reson

MI Lab, Department of Medical Imaging, St. Olavs Hospital HF, N-7006 Trondheim, Norway.

Published: September 2011

The physiological noise in 3D image acquisition is shown to depend strongly on the sampling scheme. Five sampling schemes are considered: Linear, Centric, Segmented, Random and Tuned. Tuned acquisition means that data acquisition at k-space positions k and -k are separated with a specific time interval. We model physiological noise as a periodic temporal oscillation with arbitrary spatial amplitude in the physical object and develop a general framework to describe how this is rendered in the reconstructed image. Reconstructed noise can be decomposed in one component that is in phase with the signal (parallel) and one that is 90° out of phase (orthogonal). Only the former has a significant influence on the magnitude of the signal. The study focuses on fMRI using 3D EPI. Each k-space plane is acquired in a single shot in a time much shorter than the period of the physiological noise. The above mentioned sampling schemes are applied in the slow k-space direction and noise propagates almost exclusively in this direction. The problem then, is effectively one-dimensional. Numerical simulations and analytical expressions are presented. 3D noise measurements and 2D measurements with high temporal resolution are conducted. The measurements are performed under breath-hold to isolate the effect of cardiac-induced pulsatile motion. We compare the time-course stability of the sampling schemes and the extent to which noise propagates from a localized source into other parts of the imaging volume. Tuned and Linear acquisitions perform better than Centric, Segmented and Random.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2011.06.012DOI Listing

Publication Analysis

Top Keywords

physiological noise
16
sampling schemes
12
noise
8
sampling scheme
8
centric segmented
8
segmented random
8
noise propagates
8
sampling
5
cardiac-induced physiological
4
noise gradient
4

Similar Publications

While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.

View Article and Find Full Text PDF

Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.

Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.

View Article and Find Full Text PDF

Age-related dependencies of electric and spectral powers in conventional frequency bands were studied by the newly proposed method of detailed spectral analysis. The magnetic encephalograms (MEG) and magnetic resonance images (MRI) of the head were obtained from the open archive Cam-CAN. The spatial distributions of elementary spectral components (MEG-based functional tomograms) were reconstructed from MEG for 501 subjects (248 males and 253 females, ages 18-88 years, mean age 54.

View Article and Find Full Text PDF

Attentional Inhibition Ability Predicts Neural Representation During Challenging Auditory Streaming.

Cogn Affect Behav Neurosci

January 2025

Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.

Focusing on a single source within a complex auditory scene is challenging. M/EEG-based auditory attention detection (AAD) allows to detect which stream an individual is attending to within a set of multiple concurrent streams. The high interindividual variability in the auditory attention detection performance often is attributed to physiological factors and signal-to-noise ratio of neural data.

View Article and Find Full Text PDF

Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

ACS Nano

January 2025

Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!